On the limiting distribution of the metric dimension for random forests

The metric dimension of a graph G is the minimum size of a subset S of vertices of G such that all other vertices are uniquely determined by their distances to the vertices in S . In this paper we investigate the metric dimension for two different models of random forests, in each case obtaining normal limit distributions for this parameter.

[1]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[2]  Stephen Suen,et al.  A correlation inequality and a Poisson limit theorem for nonoverlapping balanced subgraphs of a random graph , 1990, Random Struct. Algorithms.

[3]  N. Duncan Leaves on trees , 2014 .

[4]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[5]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[6]  Hsien-Kuei Hwang,et al.  On Convergence Rates in the Central Limit Theorems for Combinatorial Structures , 1998, Eur. J. Comb..

[7]  Mathias Hauptmann,et al.  On Approximation Complexity of Metric Dimension Problem , 2010, IWOCA.

[8]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[9]  Michael Drmota Asymptotic Distributions and a Multivariate Darboux Method in Enumeration Problems , 1994, J. Comb. Theory, Ser. A.

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Michael Drmota,et al.  Systems of functional equations , 1997, Random Struct. Algorithms.

[12]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[13]  Jean-Sébastien Sereni,et al.  Identifying and Locating-Dominating Codes in (Random) Geometric Networks , 2009, Comb. Probab. Comput..

[14]  Mathias Hauptmann,et al.  Approximation complexity of Metric Dimension problem , 2012, J. Discrete Algorithms.

[15]  Andrzej Rucinski,et al.  A central limit theorem for decomposable random variables with applications to random graphs , 1989, J. Comb. Theory B.

[16]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[17]  Svante Janson,et al.  New versions of Suen's correlation inequality , 1998, Random Struct. Algorithms.

[18]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[19]  Sepp Hartung,et al.  On the Parameterized and Approximation Hardness of Metric Dimension , 2012, 2013 IEEE Conference on Computational Complexity.

[20]  Michael Drmota,et al.  A Bivariate Asymptotic Expansion of Coefficients of Powers of Generating Functions , 1994, Eur. J. Comb..

[21]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[22]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[23]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[24]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[25]  David R. Wood,et al.  Extremal Graph Theory for Metric Dimension and Diameter , 2007, Electron. J. Comb..

[26]  Alejandro Estrada Moreno The k-metric dimension of a graph , 2014 .

[27]  P. Cameron,et al.  Base size, metric dimension and other invariants of groups and graphs , 2011 .

[28]  Louis H. Y. Chen The Rate of Convergence in a Central Limit Theorem for Dependent Random Variables with Arbitrary Index Set , 1986 .

[29]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[30]  Guillem Perarnau,et al.  Bounds for Identifying Codes in Terms of Degree Parameters , 2011, Electron. J. Comb..

[31]  Delia Garijo,et al.  On determining number and metric dimension of graphs , 2007 .

[32]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[33]  Béla Bollobás,et al.  Metric Dimension for Random Graphs , 2012, Electron. J. Comb..

[34]  Alan M. Frieze,et al.  Codes identifying sets of vertices in random networks , 2007, Discret. Math..

[35]  Erik Jan van Leeuwen,et al.  On the Complexity of Metric Dimension , 2011, ESA.