Computation of the interior transmission eigenvalues for elastic scattering in an inhomogeneous medium containing an obstacle

[1]  Fioralba Cakoni,et al.  Transmission Eigenvalues , 2021, Applied Mathematical Sciences.

[2]  Wen-Wei Lin,et al.  Efficient methods of computing interior transmission eigenvalues for the elastic waves , 2020, J. Comput. Phys..

[3]  Wen-Wei Lin,et al.  On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method , 2018 .

[4]  Xia Ji,et al.  Computation of Transmission Eigenvalues for Elastic Waves , 2018, 1802.03687.

[5]  Wen-Wei Lin,et al.  An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues , 2017 .

[6]  Xiaofei Li,et al.  Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking , 2017, 1701.05301.

[7]  Hongyu Liu,et al.  On isotropic cloaking and interior transmission eigenvalue problems , 2016, European Journal of Applied Mathematics.

[8]  Bojan B. Guzina,et al.  Nature of the transmission eigenvalue spectrum for elastic bodies , 2013 .

[9]  D. Colton,et al.  The inverse electromagnetic scattering problem for anisotropic media , 2010 .

[10]  D. Colton,et al.  Analytical and computational methods for transmission eigenvalues , 2010 .

[11]  Fioralba Cakoni,et al.  The Existence of an Infinite Discrete Set of Transmission Eigenvalues , 2010, SIAM J. Math. Anal..

[12]  Bojan B. Guzina,et al.  On the Existence and Uniqueness of a Solution to the Interior Transmission Problem for Piecewise-Homogeneous Solids , 2010 .

[13]  A. Kirsch On the existence of transmission eigenvalues , 2009 .

[14]  H. Haddar,et al.  On the existence of transmission eigenvalues in an inhomogeneous medium , 2009 .

[15]  K. A. Anagnostopoulos,et al.  On the Spectrum of the Interior Transmission Problem in Isotropic Elasticity , 2008 .

[16]  Antonios Charalambopoulos,et al.  On the Interior Transmission Problem in Nondissipative, Inhomogeneous, Anisotropic Elasticity , 2002 .

[17]  Andreas Kirsch,et al.  Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory , 1999 .

[18]  A. Kirsch,et al.  A simple method for solving inverse scattering problems in the resonance region , 1996 .

[19]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[20]  F. Cakoni,et al.  The interior transmission eigenvalue problem for elastic waves in media with obstacles , 2021, Inverse Problems & Imaging.

[21]  H. Haddar,et al.  Transmission Eigenvalues in Inverse Scattering Theory , 2012 .

[22]  D. Colton,et al.  The interior transmission problem , 2007 .

[23]  Antonios Charalambopoulos,et al.  The linear sampling method for the transmission problem in three-dimensional linear elasticity , 2002 .

[24]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .