A Modified Level Set Approach for Segmentation of Multiband Polarimetric SAR Images

This paper investigates the application of a level set method for the automated multiphase segmentation of multiband and polarimetric synthetic aperture radar (SAR) images. The level set formulation is used to form an energy functional that includes the image statistical information defined on active contours. In addition to the classical Wishart/Gaussian distribution for locating region boundaries, edge information is incorporated into the energy functional to improve the performance of polarimetric data segmentation. An active contour model with an edge indicator is proposed by assuming that the image boundary term follows a Gibbs prior. An empirical parameter setting criterion is developed to ensure that the components of the energy functional are in proper proportion. We then investigate the multiphase extension for energy minimization, and we use a piecewise constant model to embed the proposed active contour model. Synthetic and real multiband polarimetric SAR data are used for verification. The experiments show that our method is superior to another level set method based on the Wishart/Gaussian distribution, in which SAR edge information is not included, particularly for discriminating among low-contrast regions. Furthermore, results also show that segmentation is improved when multiband data are used in the level set framework.

[1]  Dirk H. Hoekman,et al.  A new polarimetric classification approach evaluated for agricultural crops , 2003, IEEE Trans. Geosci. Remote. Sens..

[2]  Gabriel Vasile,et al.  Hierarchical segmentation of Polarimetric SAR images using heterogeneous clutter models , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Fátima N. S. de Medeiros,et al.  Target Detection in SAR Images Based on a Level Set Approach , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Amar Mitiche,et al.  Polarimetric image segmentation via maximum-likelihood approximation and efficient multiphase level-sets , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[6]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[7]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  G. Aubert,et al.  A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .

[10]  Raghotham Reddy Ganta,et al.  Segmentation of Oil Spill Images With Illumination-Reflectance Based Adaptive Level Set Model , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  G.F. De Grandi,et al.  Texture and speckle statistics in polarimetric SAR synthesized images , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[12]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[13]  A. Doulgeris,et al.  A RELAXED WISHART MODEL FOR POLARIMETRIC SAR DATA , 2009 .

[14]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[15]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[16]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[17]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[18]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[19]  Tony F. Chan,et al.  Active Contours without Edges for Vector-Valued Images , 2000, J. Vis. Commun. Image Represent..

[20]  Maged Marghany,et al.  Discrimination between oil spill and look-alike using fractal dimension algorithm from RADARSAT-1 SAR and AIRSAR/POLSAR data , 2011 .

[21]  Xavier Dupuis,et al.  Polarimetric and Interferometric SAR Image Partition Into Statistically Homogeneous Regions Based on the Minimization of the Stochastic Complexity , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Knut Conradsen,et al.  CFAR edge detector for polarimetric SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[23]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[24]  Rabab Kreidieh Ward,et al.  Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph Partitioning , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[26]  A. Lopes,et al.  A statistical and geometrical edge detector for SAR images , 1988 .

[27]  Amar Mitiche,et al.  Multiregion level-set partitioning of synthetic aperture radar images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  Eric A. Lehmann,et al.  Joint Processing of Landsat and ALOS-PALSAR Data for Forest Mapping and Monitoring , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[30]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .