Strongly regular graphs with parameters (4m4, 2m4+m2, m4+m2, m4+m2) exist for all m>1
暂无分享,去创建一个
[1] James A. Davis,et al. A Unifying Construction for Difference Sets , 1997, J. Comb. Theory, Ser. A.
[2] W. Haemers,et al. Strongly Regular Graphs with Maximal Energy , 2007 .
[3] Qing Xiang,et al. Symmetric Bush-type Hadamard matrices of order $4m^4$ exist for all odd $m$ , 2005 .
[4] Vladimir D. Tonchev,et al. Linear Codes and the Existence of a Reversible Hadamard Difference Set in Z2xZ2xZ45 , 1997, J. Comb. Theory, Ser. A.
[5] Yury J. Ionin,et al. Combinatorics of Symmetric Designs , 2006 .
[6] Ming-Yuan Xia,et al. Some Infinite Classes of Special Williamson Matrices and Difference Sets , 1992, J. Comb. Theory, Ser. A.
[7] I. Gutman. The Energy of a Graph: Old and New Results , 2001 .
[8] Richard J. Turyn,et al. A Special Class of Williamson Matrices and Difference Sets , 1984, J. Comb. Theory, Ser. A.
[9] Richard M. Wilson,et al. Constructions of Hadamard Difference Sets , 1997, J. Comb. Theory, Ser. A.
[10] Yu Qing Chen. On the Existence of Abelian Hadamard Difference Sets and a New Family of Difference Sets , 1997 .
[11] J. J. Seidel,et al. Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.
[12] Vincent Moulton,et al. Maximal Energy Graphs , 2001, Adv. Appl. Math..
[13] Anton Betten,et al. Algebraic Combinatorics and Applications : Proceedings , 2001 .