Combinatorial and Dynamical Study of Substitutions Around the Theorem of Cobham

The aim of this paper is to expose in an “almost” self-contained way the work that has been done around the Theorem of Cobham with the point of view of substitutions.

[1]  G. Rauzy,et al.  Suites algébriques, automates et substitutions , 1980 .

[2]  Roger Villemaire,et al.  Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[5]  A. L. Semenov,et al.  Presburgerness of predicates regular in two number systems , 1977 .

[6]  Jeffrey Shallit,et al.  Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..

[7]  F. Durand,et al.  Sur les ensembles d'entiers reconnaissables , 2008, 0801.0556.

[8]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[9]  Isabelle Fagnot,et al.  On factors of automatic words , 1997 .

[10]  Anne Bertrand-Mathis,et al.  Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .

[11]  Anne Bertrand-Mathis Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .

[12]  Alexis Bès,et al.  An extension of the Cobham-Semënov Theorem , 2000, Journal of Symbolic Logic.

[13]  C. Michaux,et al.  LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .

[14]  Véronique Bruyère,et al.  Recognizable Sets of Numbers in Nonstandard Bases , 1995, LATIN.

[15]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[16]  Fabien Durand,et al.  A characterization of substitutive sequences using return words , 1998, Discret. Math..

[17]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[18]  S. Fabre,et al.  Une généralisation du théorème de Cobham , 1994 .

[19]  Jeffrey Shallit A Generalization of Automatic Sequences , 1988, Theor. Comput. Sci..

[20]  W. Parry On theβ-expansions of real numbers , 1960 .

[21]  Georges Hansel Independent numeration systems , 1998 .

[22]  Véronique Bruyère,et al.  Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..

[23]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[24]  L. Zamboni,et al.  Directed Graphs and Substitutions , 2001, Theory of Computing Systems.

[25]  Stéphane Fabre Substitutions and b-systems of numbers , 1995 .

[26]  Jean-Jacques Pansiot,et al.  Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.

[27]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[29]  Fabien Durand,et al.  A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.

[30]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[31]  Guy Robert,et al.  À New York , 1967 .

[32]  Luca Q. Zamboni,et al.  Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.