Combinatorial and Dynamical Study of Substitutions Around the Theorem of Cobham
暂无分享,去创建一个
[1] G. Rauzy,et al. Suites algébriques, automates et substitutions , 1980 .
[2] Roger Villemaire,et al. Presburger Arithmetic and Recognizability of Sets of Natural Numbers by Automata: New Proofs of Cobham's and Semenov's Theorems , 1996, Ann. Pure Appl. Log..
[3] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.
[4] Christian F. Skau,et al. Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.
[5] A. L. Semenov,et al. Presburgerness of predicates regular in two number systems , 1977 .
[6] Jeffrey Shallit,et al. Numeration Systems, Linear Recurrences, and Regular Sets , 1994, Inf. Comput..
[7] F. Durand,et al. Sur les ensembles d'entiers reconnaissables , 2008, 0801.0556.
[8] Fabien Durand,et al. Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.
[9] Isabelle Fagnot,et al. On factors of automatic words , 1997 .
[10] Anne Bertrand-Mathis,et al. Comment ecrire les nombres entiers dans une base qui n'est pas entiere , 1989 .
[11] Anne Bertrand-Mathis. Développement en base $\theta $, répartition modulo un de la suite $(x\theta ^n)$, n$\ge 0$, langages codés et $\theta $-shift , 1986 .
[12] Alexis Bès,et al. An extension of the Cobham-Semënov Theorem , 2000, Journal of Symbolic Logic.
[13] C. Michaux,et al. LOGIC AND p-RECOGNIZABLE SETS OF INTEGERS , 1994 .
[14] Véronique Bruyère,et al. Recognizable Sets of Numbers in Nonstandard Bases , 1995, LATIN.
[15] B. Mossé. Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .
[16] Fabien Durand,et al. A characterization of substitutive sequences using return words , 1998, Discret. Math..
[17] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[18] S. Fabre,et al. Une généralisation du théorème de Cobham , 1994 .
[19] Jeffrey Shallit. A Generalization of Automatic Sequences , 1988, Theor. Comput. Sci..
[20] W. Parry. On theβ-expansions of real numbers , 1960 .
[21] Georges Hansel. Independent numeration systems , 1998 .
[22] Véronique Bruyère,et al. Bertrand Numeration Systems and Recognizability , 1997, Theor. Comput. Sci..
[23] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[24] L. Zamboni,et al. Directed Graphs and Substitutions , 2001, Theory of Computing Systems.
[25] Stéphane Fabre. Substitutions and b-systems of numbers , 1995 .
[26] Jean-Jacques Pansiot,et al. Complexité des Facteurs des Mots Infinis Engendrés par Morphimes Itérés , 1984, ICALP.
[27] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[28] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[29] Fabien Durand,et al. A Generalization of Cobham's Theorem , 1998, Theory of Computing Systems.
[30] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[31] Guy Robert,et al. À New York , 1967 .
[32] Luca Q. Zamboni,et al. Descendants of Primitive Substitutions , 1999, Theory of Computing Systems.