INVESTIGATION OF TEMPERATURES AND RESIDUAL STRESSES IN SPEED STROKE GRINDING VIA FEA SIMULATION AND PRACTICAL TESTS

The new technology of speed stroke grinding promises to meet the industrial demand for a high-efficiency, high-quality finishing process. The surface layer properties of the workpiece, such as residual stresses, are a vital factor in the quality of the workpiece and must be considered when choosing process parameters. This paper discusses the residual stresses resulting from practical speed stroke grinding tests of hardened steels using CBN grinding wheels, as well as an in-development FEA model for the thermal aspects of speed stroke grinding.

[1]  W. Rowe,et al.  Analysis of Grinding Temperatures by Energy Partitioning , 1996 .

[2]  S. Malkin,et al.  Thermal Analysis of Grinding , 2007 .

[3]  T. D. Howes,et al.  Fluid Film Boiling in Shallow Cut Grinding , 1987 .

[4]  Ichiro Inasaki,et al.  Tribology of Abrasive Machining Processes , 2004 .

[5]  T. Jin,et al.  Three Dimensional Finite Element Simulation of Transient Heat Transfer in High Efficiency Deep Grinding , 2004 .

[6]  W. B. Rowe,et al.  An Advance in the Modelling of Thermal Effects in the Grinding Process , 1991 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Stephen Malkin,et al.  Energy Partition to the Workpiece for Grinding of Ceramics , 1995 .

[9]  Robert Bauer,et al.  Finite element modeling approaches in grinding , 2009 .

[10]  W. Rowe,et al.  Validation of Thermal Properties in Grinding. , 1998 .

[11]  Ekkard Brinksmeier,et al.  Advances in Modeling and Simulation of Grinding Processes , 2006 .

[12]  Stephen Malkin,et al.  Grinding Technology: Theory and Applications of Machining with Abrasives , 1989 .

[13]  Robert Bauer,et al.  Experimental validation of numerical thermal models for dry grinding , 2008 .

[14]  Mofid Mahdi,et al.  The finite element thermal analysis of grinding processes by ADINA , 1995 .

[15]  Fritz Klocke,et al.  Manufacturing Processes 2: Grinding, Honing, Lapping , 2009 .

[16]  Mofid Mahdi,et al.  Applied mechanics in grinding—IV. The mechanism of grinding induced phase transformation , 1995 .

[17]  A. Boyle,et al.  Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold , 1988 .

[18]  N. DesRuisseaux,et al.  Temperature in Semi-Infinite and Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling , 1970 .

[19]  Stephen Malkin,et al.  Thermal Aspects of Grinding: Part 2—Surface Temperatures and Workpiece Burn , 1974 .

[20]  Fritz Klocke,et al.  Randzonenbeeinflussung beim Schnellhubschleifen , 2008 .

[21]  W. Domke Werkstoffkunde und Werkstoffprüfung , 1982 .

[22]  Mofid Mahdi,et al.  A numerical algorithm for the full coupling of mechanical deformation, thermal deformation and phase transformation in surface grinding , 2000 .

[23]  Srinivasan Chandrasekar,et al.  Simulation of thermal stresses due to grinding , 2001 .

[24]  Stephen Malkin,et al.  Minimum energy in abrasive processes , 1975 .

[25]  Hédi Hamdi,et al.  Residual stresses computation in a grinding process , 2004 .

[26]  N. Cook,et al.  The Wear of Grinding Wheels: Part 2—Fracture Wear , 1971 .

[27]  S. Malkin,et al.  Energy Partition to the Workpiece for Grinding with Aluminum Oxide and CBN Abrasive Wheels , 1995 .

[28]  S. Malkin,et al.  Temperatures and Energy Partition for Grinding with Vitrified CBN Wheels , 1999 .

[29]  Randschicht-Wärmebehandlung durch Schleifen , 1994 .

[30]  Stephen Malkin,et al.  Energy Partition and Cooling During Grinding , 2000 .