Roman domination in graphs

Abstract A Roman dominating function on a graph G=(V,E) is a function f : V→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V)=∑u∈Vf(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper, we study the graph theoretic properties of this variant of the domination number of a graph.

[1]  Michael A. Henning A characterization of Roman trees , 2002, Discuss. Math. Graph Theory.

[2]  Charles S. Revelle,et al.  Defendens Imperium Romanum: A Classical Problem in Military Strategy , 2000, Am. Math. Mon..

[3]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[4]  Miranca Fischermann,et al.  Block graphs with unique minimum dominating sets , 2001, Discret. Math..

[5]  Martin Farber,et al.  Independent domination in chordal graphs , 1982, Oper. Res. Lett..

[6]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[7]  I. Stewart Defend the Roman Empire , 1999 .

[8]  John Arquilla,et al.  "Graphing" an Optimal Grand Strategy , 1995 .