Consumer decision making in knowledge-based recommendation

In contrast to customers of bricks and mortar stores, users of online selling environments are not supported by human sales experts. In such situations recommender applications help to identify the products and/or services that fit the user’s wishes and needs. In order to successfully apply recommendation technologies we have to develop an in-depth understanding of decision strategies of users. These decision strategies are explained in different models of human decision making. In this paper we provide an overview of selected models and discuss their importance for recommender system development. Furthermore, we provide an outlook on future research issues.

[1]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[2]  J. Baron,et al.  Status-quo and omission biases , 1992 .

[3]  Daniel D Huppert The Development of Consumer Behavior Theory , 1968 .

[4]  Alexander Felfernig,et al.  Utility-Based Repair of Inconsistent Requirements , 2009, IEA/AIE.

[5]  Schneider,et al.  All Frames Are Not Created Equal: A Typology and Critical Analysis of Framing Effects. , 1998, Organizational behavior and human decision processes.

[6]  Alet C. Erasmus,et al.  Consumer decision-making models within the discipline of consumer science: a critical approach , 2010 .

[7]  Robin Burke,et al.  Knowledge-based recommender systems , 2000 .

[8]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[9]  J. Mazanec,et al.  Consumer decision making. , 1994 .

[10]  Luc Wathieu,et al.  The Framing Effect of Price Format , 2007 .

[11]  Alexander Felfernig,et al.  A Dominance Model for the Calculation of Decoy Products in Recommendation Environments , 2008 .

[12]  Itamar Simonson,et al.  Choice Set Configuration as a Determinant of Preference Attribution and Strength , 2008 .

[13]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[14]  J. Neumann,et al.  Theory of games and economic behavior , 1945, 100 Years of Math Milestones.

[15]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[16]  Gerhard Friedrich,et al.  Persuasive Recommendation: Serial Position Effects in Knowledge-Based Recommender Systems , 2007, PERSUASIVE.

[17]  J. Jacoby,et al.  Brand Choice Behavior as a Function of Information Load: Replication and Extension , 1974 .

[18]  Daniel Kahneman,et al.  Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias , 1991 .

[19]  Alexander Felfernig,et al.  Constraint-based recommender systems: technologies and research issues , 2008, ICEC.

[20]  Alexander Felfernig,et al.  Persuasion in Knowledge-Based Recommendation , 2008, PERSUASIVE.

[21]  John O. Summers Less Information is Better? , 1974 .

[22]  William Samuelson,et al.  Status quo bias in decision making , 1988 .

[23]  Li Chen,et al.  The evaluation of a hybrid critiquing system with preference-based recommendations organization , 2007, RecSys '07.

[24]  Alexander Felfernig,et al.  Calculating Decoy Items in Utility-Based Recommendation , 2009, IEA/AIE.

[25]  Barry Smyth,et al.  A comparison of two compound critiquing systems , 2007, IUI '07.

[26]  R. G. Crowder Principles of learning and memory , 1977 .

[27]  Francesco M. Nicosia,et al.  Consumer Decision Processes: Marketing and Advertising Implications , 1969 .

[28]  Alexander Felfernig,et al.  Personalized user interfaces for product configuration , 2010, IUI '10.

[29]  Eric J. Johnson,et al.  The adaptive decision maker , 1993 .

[30]  Byung-Kwan Lee,et al.  The effect of information overload on consumer choice quality in an on-line environment , 2004 .

[31]  Charles F. Hofacker,et al.  Primacy and Recency Effects on Clicking Behavior , 2006, J. Comput. Mediat. Commun..

[32]  J. Jacoby,et al.  Brand Choice Behavior as a Function of Information Load , 1974 .

[33]  G. Haines,et al.  The Theory of Buyer Behavior. , 1970 .

[34]  R. Olshavsky,et al.  Task Complexity and Contingent Processing in Brand Choice , 1979 .

[35]  J. E. Russo,et al.  More Information Is Better: A Reevaluation of Jacoby, Speller and Kohn , 1974 .

[36]  Haiyang Yang,et al.  Consumer Decision Making , 2015 .

[37]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[38]  R. Ratcliff,et al.  Multialternative decision field theory: a dynamic connectionist model of decision making. , 2001, Psychological review.

[39]  John W. Payne,et al.  Task complexity and contingent processing in decision making: An information search and protocol analysis☆ , 1976 .

[40]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[41]  A. Tversky,et al.  Choice in Context: Tradeoff Contrast and Extremeness Aversion , 1992 .

[42]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[43]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[44]  Alexander Felfernig,et al.  The asymmetric dominance effect and its role in e-tourism recommender applications , 2009 .

[45]  Susan Baines,et al.  A critical approach. , 2011, Midwives.

[46]  T. Marteau,et al.  Framing of information: its influence upon decisions of doctors and patients. , 1989, The British journal of social psychology.

[47]  H. Simon,et al.  Rational choice and the structure of the environment. , 1956, Psychological review.

[48]  Yaacov Schul,et al.  The influence of quantity of information and goal framing on decision , 1995 .

[49]  J. Bettman,et al.  Effects of Information Presentation Format on Consumer Information Acquisition Strategies , 1977 .

[50]  Alexander Felfernig,et al.  Impacts of decoy elements on result set evaluations in knowledge-based recommendation , 2009, Int. J. Adv. Intell. Paradigms.

[51]  John W. Payne,et al.  The adaptive decision maker: Name index , 1993 .

[52]  Barry O'Sullivan,et al.  Representative Explanations for Over-Constrained Problems , 2007, AAAI.

[53]  M. F. Luce,et al.  Constructive Consumer Choice Processes , 1998 .

[54]  S. Asch Forming impressions of personality. , 1946, Journal of Abnormal Psychology.

[55]  I. Levin,et al.  How Consumers Are Affected by the Framing of Attribute Information Before and After Consuming the Product , 1988 .

[56]  B. Kahn,et al.  Variety for sale: Mass customization or mass confusion? , 1998 .

[57]  Alexander Strashny Asymmetric loss utility: an analysis of decision under risk , 2004 .

[58]  Markus Stumptner,et al.  Consistency-based diagnosis of configuration knowledge bases , 1999, Artif. Intell..

[59]  William J. Hauser,et al.  A Replication and Extension , 1978 .

[60]  A. Tversky,et al.  The framing of decisions and the psychology of choice. , 1981, Science.

[61]  Yehuda Koren,et al.  Improved Neighborhood-based Collaborative Filtering , 2007 .

[62]  Bradley N. Miller,et al.  Applying Collaborative Filtering to Usenet News , 1997 .

[63]  Harold H. Kassarjian,et al.  The Development of Consumer Behavior Theory , 1982 .

[64]  P. Wason On the Failure to Eliminate Hypotheses in a Conceptual Task , 1960 .

[65]  Adelson Piñón,et al.  Effects of Mood on Adoption of Loss Frame in Risky Choice , 2004 .

[66]  Christopher P. Puto,et al.  Adding Asymmetrically Dominated Alternatives: Violations of Regularity & the Similarity Hypothesis. , 1981 .

[67]  A. Tversky,et al.  Rational choice and the framing of decisions , 1990 .