Orientation Disparity, Deformation, and Stereoscopic Slant Perception

Koenderink and van Doorn's theory, that the basis of stereoscopic slant perception is the deformation component of the disparity, field, was tested for slant around a horizontal axis, which produces images with a vertical ramp of horizontal disparity (horizontal shear) characterised by a global orientation disparity at the vertical meridian. The disparity field in this case can be parsed into two components, deformation and curl, which each contribute half of the orientation disparity. This case was compared with similar random-dot stimuli in which the deformation component was doubled and the curl component eliminated or vice versa. All three types of stimuli had identical orientation disparity at the vertical meridian. A condition in which there was no such orientation disparity, but deformation was present, was also included. It was found that perceived slant was not related to the deformation present, as Koenderink and van Doorn's theory would predict, but was predictable from the orientation disparity at the vertical meridian per se.