Toward a probabilistic approach to complex systems

Abstract The probabilistic approach to deterministic chaos and to bifurcation is outlined. The signature of chaos and bifurcation on the spectral properties of the Frobenius-Perron and Fokker-Planck operators is identified. A series of entropy-like quantities is introduced and their scaling properties are used to classify different types of dynamical processes generated by complex systems.

[1]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[2]  Epsilon-entropy analysis for a time series of thermal turbulence , 1992 .

[3]  Werner Ebeling,et al.  Word frequency and entropy of symbolic sequences: a dynamical perspective , 1992 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[5]  Ioannis Antoniou,et al.  Spectral decomposition of the Renyi map , 1993 .

[6]  P. Gaspard,et al.  Scattering and resonances: Classical and quantum dynamics , 1993 .

[7]  Werner Ebeling,et al.  Dynamics and Complexity of Biomolecules , 1987 .

[8]  G. Dewel,et al.  Nonequilibrium phase transitions and chemical instabilities , 1981 .

[9]  C. Broeck,et al.  Asymptotic properties of coupled nonlinear langevin equations in the limit of weak noise. I: Cusp bifurcation , 1982 .

[10]  P. Cvitanović,et al.  Periodic orbit expansions for classical smooth flows , 1991 .

[11]  F. Baras,et al.  Microscopic simulation of chemical systems , 1992 .

[12]  M. Mackey,et al.  Probabilistic properties of deterministic systems , 1985, Acta Applicandae Mathematicae.

[13]  Hiroshi H. Hasegawa,et al.  Decaying eigenstates for simple chaotic systems , 1992 .

[14]  P. Gaspard,et al.  Sporadicity: Between periodic and chaotic dynamical behaviors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[15]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[16]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[17]  Nicolis Master-equation approach to deterministic chaos. , 1988, Physical review. A, General physics.

[18]  Stephen Smale,et al.  The mathematics of time , 1980 .

[19]  Grégoire Nicolis,et al.  Toward a probabilistic description of deterministic chaos , 1992 .

[20]  G. Nicolis,et al.  Nonequilibrium Phase Transitions and Chemical Reactions , 1978 .

[21]  L. Reichl A modern course in statistical physics , 1980 .

[22]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  Grégoire Nicolis,et al.  EFFECT OF FLUCTUATIONS ON BIFURCATION PHENOMENA , 1979 .

[24]  Werner Ebeling,et al.  Entropy of symbolic sequences: the role of correlations , 1991 .

[25]  J. Nicolis,et al.  Chaos and information processing , 1991 .

[26]  epsilon entropy for a time series of thermal turbulence. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  P. Gaspard r-adic one-dimensional maps and the Euler summation formula , 1992 .