An Inexact Alternating Directions Algorithm for Constrained Total Variation Regularized Compressive Sensing Problems

Recently, the efficient solvers for compressive sensing (CS) problems with Total Variation (TV) regularization are needed, mainly because of the reconstruction of an image by a single pixel camera, or the recovery of a medical image from its partial Fourier samples. In this paper, we propose an alternating directions scheme algorithm for solving the TV regularized minimization problems with linear constraints. We minimize the corresponding augmented Lagrangian function alternatively at each step. Both of the resulting subproblems admit explicit solutions by applying a linear-time shrinkage. The algorithm is easily performed, in which, only two matrix-vector multiplications and two fast Fourier transforms are involved at per-iteration. The global convergence of the proposed algorithm follows directly in this literature. Numerical comparisons with the sate-of-the-art method TVLA3 illustrate that the proposed method is effective and promising.

[1]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[2]  Xue-Cheng Tai,et al.  Noise removal using smoothed normals and surface fitting , 2004, IEEE Transactions on Image Processing.

[3]  T. Chan,et al.  On the Convergence of the Lagged Diffusivity Fixed Point Method in Total Variation Image Restoration , 1999 .

[4]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[5]  William W. Hager,et al.  A Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization , 2004, SIAM J. Optim..

[6]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[7]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[8]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[9]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[10]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[11]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[12]  Michael K. Ng,et al.  On Semismooth Newton’s Methods for Total Variation Minimization , 2007, Journal of Mathematical Imaging and Vision.

[13]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[14]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[15]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[16]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[17]  Xiaoming Yuan,et al.  Alternating algorithms for total variation image reconstruction from random projections , 2012 .

[18]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[19]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[20]  Gaohang Yu,et al.  On Nonmonotone Chambolle Gradient Projection Algorithms for Total Variation Image Restoration , 2009, Journal of Mathematical Imaging and Vision.

[21]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[22]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[23]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[24]  Michael K. Ng,et al.  Fast Recursive Least Squares Adaptive Filtering by Fast Fourier Transform-Based Conjugate Gradient Iterations , 1996, SIAM J. Sci. Comput..

[25]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[26]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[27]  Simon Setzer,et al.  Operator Splittings, Bregman Methods and Frame Shrinkage in Image Processing , 2011, International Journal of Computer Vision.

[28]  Yoram Singer,et al.  Efficient Learning using Forward-Backward Splitting , 2009, NIPS.

[29]  Chengbo Li An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing , 2010 .

[30]  Junfeng Yang,et al.  A Fast TVL1-L2 Minimization Algorithm for Signal Reconstruction from Partial Fourier Data , 2008 .

[31]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[32]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[33]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[34]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[35]  Ke Chen,et al.  An Optimization-Based Multilevel Algorithm for Total Variation Image Denoising , 2006, Multiscale Model. Simul..

[36]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[37]  Yin Zhang,et al.  Compressive sensing for 3d data processing tasks: applications, models and algorithms , 2011 .

[38]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[39]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[40]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[41]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[42]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[43]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[44]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[45]  Simon Setzer Splitting methods in image processing , 2009 .

[46]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[47]  D. Krishnan,et al.  An Efficient Operator-Splitting Method for Noise Removal in Images , 2006 .

[48]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[49]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[50]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[51]  Michael K. Ng,et al.  Iterative Algorithms Based on Decoupling of Deblurring and Denoising for Image Restoration , 2008, SIAM J. Sci. Comput..