A survey of scheduling problems with late work criteria

The paper presents the first complete survey of scheduling problems with the late work criteria. Late work objective functions estimate the quality of a schedule based on durations of late parts of jobs, not taking into account the amount of delay for fully late jobs. The paper provides a formal definition of the late work parameter and compares the criteria based on it with other classical performance measures. It shows the relationship between the late work model and the imprecise computation model known from the hard real-time literature. Moreover, the paper presents a few real world applications of the late work objective function. The paper lists results obtained for nearly forty problems of scheduling jobs on a single machine, parallel (identical and uniform) machines and dedicated machines, investigated in the literature since 1984.

[1]  Chris N. Potts,et al.  Approximation algorithms for scheduling a single machine to minimize total late work , 1992, Oper. Res. Lett..

[2]  S. N. Maheshwari,et al.  An O(|V|³) Algorithm for Finding Maximum Flows in Networks , 1978, Inf. Process. Lett..

[3]  Philippe Baptiste,et al.  Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times , 1999 .

[4]  Malgorzata Sterna,et al.  Flow Shop Scheduling with Late Work Criterion - Choosing the Best Solution Strategy , 2004, AACC.

[5]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[6]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[7]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[8]  Chris N. Potts,et al.  A Fully Polynomial Approximation Scheme for Scheduling a Single Machine to Minimize Total Weighted Late Work , 1994, Math. Oper. Res..

[9]  S. M. Johnson,et al.  Optimal two- and three-stage production schedules with setup times included , 1954 .

[10]  James R. Jackson,et al.  An extension of Johnson's results on job IDT scheduling , 1956 .

[11]  Kjetil Fagerholt,et al.  A decision support methodology for strategic planning in maritime transportation , 2010 .

[12]  Wolfgang Domschke,et al.  Operations Research Proceedings 1999 , 2000 .

[13]  Laureano F. Escudero,et al.  WISCHE: A DSS for water irrigation scheduling ☆ , 2010 .

[14]  Gerd Finke,et al.  Minimizing Mean Weighted Execution Time Loss on Identical and Uniform Processors , 1987, Inf. Process. Lett..

[15]  Bahram Alidaee,et al.  Single machine scheduling to minimize total weighted late work: a comparison of scheduling rules and search algorithms , 2002 .

[16]  Suh-Jenq Yang,et al.  Minimizing the makespan on single-machine scheduling with aging effect and variable maintenance activities , 2010 .

[17]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[18]  Malgorzata Sterna,et al.  Metaheuristics for Late Work Minimization in Two-Machine Flow Shop with Common Due Date , 2005, KI.

[19]  Rubén Ruiz,et al.  New high performing heuristics for minimizing makespan in permutation flowshops , 2009 .

[20]  Ik Sun Lee,et al.  Coordinated scheduling of production and delivery stages with stage-dependent inventory holding costs , 2010 .

[21]  Wen-Chiung Lee,et al.  A single-machine learning effect scheduling problem with release times , 2010 .

[22]  Erwin Pesch,et al.  Evolution based learning in a job shop scheduling environment , 1995, Comput. Oper. Res..

[23]  Éva Tardos,et al.  A strongly polynomial minimum cost circulation algorithm , 1985, Comb..

[24]  Malgorzata Sterna,et al.  Late work minimization in a small flexible manufacturing system , 2007, Comput. Ind. Eng..

[25]  Malgorzata Sterna,et al.  Late work minimization in flow shops by a genetic algorithm , 2009, Comput. Ind. Eng..

[26]  Malgorzata Sterna,et al.  A comparison of solution procedures for two-machine flow shop scheduling with late work criterion , 2005, Comput. Ind. Eng..

[27]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[28]  Sergey Kovalev,et al.  Batching for work and rework processes on dedicated facilities to minimize the makespan , 2010 .

[29]  Philippe Baptiste,et al.  Ten notes on equal-processing-time scheduling , 2004, 4OR.

[30]  Awi Federgruen,et al.  Preemptive Scheduling of Uniform Machines by Ordinary Network Flow Techniques , 1986 .

[31]  Malgorzata Sterna,et al.  The two-machine flow-shop problem with weighted late work criterion and common due date , 2005, Eur. J. Oper. Res..

[32]  Joseph Y.-T. Leung,et al.  Minimizing the Weighted Number of Tardy Task Units , 1994, Discret. Appl. Math..

[33]  Michael Pinedo,et al.  Scheduling: Theory, Algorithms, and Systems , 1994 .

[34]  Adam Janiak,et al.  A note on a makespan minimization problem with a multi-ability learning effect , 2010 .

[35]  Robert McNaughton,et al.  Scheduling with Deadlines and Loss Functions , 1959 .

[36]  Ron Shamir,et al.  Minimizing the number of tardy job units under release time constraints , 1990, Discret. Appl. Math..

[37]  Chris N. Potts,et al.  Single Machine Scheduling to Minimize Total Weighted Late Work , 1995, INFORMS J. Comput..

[38]  B. M. T. Lin,et al.  Two-machine flow-shop scheduling to minimize total late work , 2006 .

[39]  Wei-Kuan Shih,et al.  Scheduling imprecise computations to minimize total error , 1989, Microprocessing and Microprogramming.

[40]  Charles U. Martel,et al.  Fast Algorithms for Bipartite Network Flow , 1987, SIAM J. Comput..

[41]  Yuzhong Zhang,et al.  The NP-Hardness of Minimizing the Total Late Work on an Unbounded Batch Machine , 2009, Asia Pac. J. Oper. Res..

[42]  Ron Shamir,et al.  Strongly Polynomial Algorithms for the High Multiplicity Scheduling Problem , 1991, Oper. Res..

[43]  Jacek Blazewicz,et al.  Scheduling preemptible tasks on parallel processors with information loss , 1984 .

[44]  Débora P. Ronconi,et al.  Some heuristic algorithms for total tardiness minimization in a flowshop with blocking , 2009 .

[45]  Teofilo F. Gonzalez,et al.  Open Shop Scheduling to Minimize Finish Time , 1976, JACM.

[46]  J. A. Hoogeveen,et al.  Scheduling a batching machine , 1998 .

[47]  Chris N. Potts,et al.  Single Machine Scheduling to Minimize Total Late Work , 1992, Oper. Res..

[48]  Malgorzata Sterna,et al.  Open shop scheduling problems with late work criteria , 2004, Discret. Appl. Math..

[49]  Malgorzata Sterna,et al.  Metaheuristic approaches for the two-machine flow-shop problem with weighted late work criterion and common due date , 2008, Comput. Oper. Res..

[50]  J. Carlier,et al.  Adjustment of heads and tails for the job-shop problem , 1994 .

[51]  Wieslaw Kubiak,et al.  Scheduling shops to minimize the weighted number of late jobs , 1994, Oper. Res. Lett..

[52]  James B. Orlin,et al.  A faster strongly polynomial minimum cost flow algorithm , 1993, STOC '88.

[53]  Wei-Kuan Shih,et al.  Algorithms for scheduling imprecise computations , 1991, Computer.

[54]  Stavros G. Kolliopoulos,et al.  Approximation algorithms for minimizing the total weighted tardiness on a single machine , 2006, Theor. Comput. Sci..

[55]  Jacek Blazewicz,et al.  A note on the two machine job shop with the weighted late work criterion , 2007, J. Sched..

[56]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[57]  D. Teichroew,et al.  Optimal Short Term Financing Decision , 1965 .

[58]  Malgorzata Sterna,et al.  Total Late Work Criteria for Shop Scheduling Problems , 2000 .

[59]  Wei Kuan Shih,et al.  Algorithms for Scheduling Imprecise Computations with Timing Constraints , 1991, SIAM J. Comput..

[60]  Malgorzata Sterna,et al.  Dominance relations for two-machine flow shop problem with late work criterion , 2007 .

[61]  Gerhard J. Woeginger,et al.  When Does a Dynamic Programming Formulation Guarantee the Existence of a Fully Polynomial Time Approximation Scheme (FPTAS)? , 2000, INFORMS J. Comput..

[62]  Jan Karel Lenstra,et al.  Complexity results for scheduling chains on a single machine : (preprint) , 1980 .