Single DNA conformations and biological function

From a nanoscience perspective, cellular processes and their reduced in vitro imitations provide extraordinary examples for highly robust few or single molecule reaction pathways. A prime example are biochemical reactions involving DNA molecules, and the coupling of these reactions to the physical conformations of DNA. In this review, we summarise recent results on the following phenomena: We investigate the biophysical properties of DNA-looping and the equilibrium configurations of DNA-knots, whose relevance to biological processes are increasingly appreciated. We discuss how random DNA-looping may be related to the efficiency of the target search process of proteins for their specific binding site on the DNA molecule. And we dwell on the spontaneous formation of intermittent DNA nanobubbles and their importance for biological processes, such as transcription initiation. The physical properties of DNA may indeed turn out to be particularly suitable for the use of DNA in nanosensing applications.

[1]  M. Ptashne,et al.  Genes and Signals , 2001 .

[2]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[3]  Ronald C. Read The knot book: An elementary introduction to the mathematical theory of knots , 1997 .

[4]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[5]  P. Lawrence,et al.  Genes in development , 1977, Nature.

[6]  F. T. Wall,et al.  Principles of Polymer Chemistry. Paul J. Flory.Cornell Univ. Press, Ithaca, New York, 1953. 688pp. Illus. $8.50 , 1954 .

[7]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[8]  Tom McNally The complete book of fly fishing , 1993 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Burak Erman,et al.  Structures and properties of rubberlike networks , 1997 .

[11]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[12]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[13]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[14]  Johann Benedict Listing,et al.  Vorstudien zur Topologie , 1848 .

[15]  M. Ptashne A Genetic Switch , 1986 .

[16]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[17]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[18]  C. Dieffenbach,et al.  PCR primer: a laboratory manual. , 2003 .

[19]  S. I. Rubinow Mathematical Problems in the Biological Sciences , 1987 .

[20]  M. N. Marushin Limit Γ-distributions for sums of random variables, connected in an inhomogeneous Markov chain with two states , 1984 .

[21]  J. Ferry Viscoelastic properties of polymers , 1961 .

[22]  C. Glover,et al.  Gene expression profiling for hematopoietic cell culture , 2006 .

[23]  Eldon J. Gardner Principles of Genetics , 1961 .

[24]  C. Tanford Macromolecules , 1994, Nature.

[25]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[26]  Gabriela Koreisová,et al.  Scientific Papers , 1997, Nature.

[27]  S. Spragg Biophysical chemistry , 1979, Nature.

[28]  P. Flory Principles of polymer chemistry , 1953 .

[29]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[30]  W. Ebeling Stochastic Processes in Physics and Chemistry , 1995 .

[31]  D. Poulson Principles of Genetics , 1941, The Yale Journal of Biology and Medicine.

[32]  Douglas Poland,et al.  Theory of helix-coil transitions in biopolymers , 1970 .

[33]  A. Ashtekar,et al.  Loops, Knots, Gauge Theories and Quantum Gravity: Index , 1996 .

[34]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[35]  J. Cadorette,et al.  A 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2004 .

[36]  L. Treloar The Physics of Rubber Elasticity (J. Meixner) , 1959 .

[37]  Jean-Marie Lehn,et al.  Supramolecular chemistry , 1994, Science.

[38]  I. Tinoco Physical chemistry of nucleic acids. , 2002, Annual review of physical chemistry.

[39]  R. Durrett Random walks and random environments. Volume 1: Random walks , 1996 .

[40]  Sidney W. Fox,et al.  Biological replication of macromolecules , 1959 .

[41]  Nihon Hassei Seibutsu Gakkai,et al.  Genes to cells , 1996 .

[42]  B. Zimm,et al.  Theory of helix–coil transitions involving complementary poly‐ and oligo‐nucleotides. I. The complete binding case , 1963 .

[43]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[44]  J. Gilman,et al.  Nanotechnology , 2001 .

[45]  L. Kauffman Knots And Physics , 1991 .

[46]  J. Davenport Editor , 1960 .

[47]  C. Adams Tales of Topology. (Book Reviews: The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots.) , 1994 .

[48]  T. Garel Remarks on homo- and hetero-polymeric aspects of protein folding , 2003, cond-mat/0305053.

[49]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[50]  Editors , 1986, Brain Research Bulletin.

[51]  A. Comtet,et al.  Topological aspects of low dimensional systems , 1999 .

[52]  T. Korner Lord Kelvin , 1924 .

[53]  M. D. Frank-Kamenet︠s︡kiĭ,et al.  Unraveling DNA : the most important molecule of life , 1997 .

[54]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[55]  C. Cantor,et al.  Biophysical chemistry. Part III, The behavior of biologicalmacromolecules , 1980 .

[56]  S. Burgard ISR , 1999 .

[57]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[58]  Wei-Ming Lee,et al.  Statistical Mechanics of Macromolecules , 1964 .

[59]  B. Ganem RNA world , 1987, Nature.

[60]  L. Pauling,et al.  Structural chemistry and molecular biology , 1968 .