The impact of characterization techniques on HgCdTe infrared detector technology

The authors review those characterization techniques that have played significant roles in the development of HgCdTe infrared detector technology. They focus on the two specific HgCdTe devices that have achieved widespread application for infrared detection in the LWIR (8-12 mu m) and VLWIR (12-20 mu m) spectral regions: the simple n-type photoconductor and the P-on-n LPE heterojunction photodiode. They review the device physics of these two detectors, relate device performance to starting material properties and processing parameters, and describe the most important characterization techniques that have had a role in their development.

[1]  T. Casselman,et al.  Potential barriers in HgCdTe heterojunctions , 1985 .

[2]  Anthony P. Erwin,et al.  Etch pit study of dislocation formation in Hg1−xCdxTe during array hybridization and its effect on device performance , 1989 .

[3]  J. Dubowski,et al.  Electron scattering in CdxHg1−xTe , 1981 .

[4]  P. W. Norton,et al.  X-ray diffraction characterization of LPE HgCdTe heterojunction photodiode material , 1993 .

[5]  R. E. Burgess Fluctuations in the number of charge carriers in a semiconductor , 1954 .

[6]  P. W. Norton,et al.  Growth and characterization of P-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18 μm applications , 1991 .

[7]  W. A. Radford,et al.  Influence of barriers on charge transport across HgCdTe heterojunctions , 1990 .

[8]  C. Viswanathan,et al.  Novel very sensitive analytical technique for compositional analysis of Hg1−xCdxTe epilayers , 1992 .

[9]  M. B. Reine,et al.  Chapter 6 Photovoltaic Infrared Detectors , 1981 .

[10]  S. Ghandhi,et al.  The influence of accumulation on the hall-effect in n-type Hg1−xCdxTe , 1990 .

[11]  D. Polla,et al.  Lifetime measurement in Hg0.7Cd0.3Te by population modulation , 1981 .

[12]  W. Mclevige,et al.  Ellipsometric profiling of HgCdTe heterostructures , 1991 .

[13]  K. J. Riley,et al.  Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .

[14]  D. L. Smith,et al.  Effects of blocking contacts on generation‐recombination noise and responsivity in intrinsic photoconductors , 1984 .

[15]  Ignacio Esquivias,et al.  Characterization of anodic fluoride films on Hg1-xCdxTe , 1991, Defense, Security, and Sensing.

[16]  T. Magee,et al.  Overview of microstructural defect development in interfacial regions of HgCdTe and CdTe layers grown on CdTe and alternate substrates , 1985 .

[17]  Jeremiah R. Lowney,et al.  Temperature and composition dependence of the energy gap of Hg1−xCdxTe by two‐photon magnetoabsorption techniques , 1990 .

[18]  Michael N. Grimbergen,et al.  Misfit and threading dislocations in HgCdTe epitaxy , 1986 .

[19]  H. K. Chung,et al.  Origin of 1/f noise observed in Hg0.7Cd0.3Te variable area photodiode arrays , 1985 .

[20]  P. Migliorato,et al.  Common anion heterojunctions: CdTe-CdHgTe , 1983 .

[21]  J. Rosbeck,et al.  Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors , 1992 .

[22]  M. A. Kinch,et al.  0.1 eV HgCdTe photoconductive detector performance , 1977 .

[23]  R. E. Burgess The Statistics of Charge Carrier Fluctuations in Semiconductors , 1956 .

[24]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[25]  Mitsuo Yoshikawa,et al.  Dislocations in Hg1−xCdxTe/Cd1−zZnzTe epilayers grown by liquid‐phase epitaxy , 1988 .

[26]  M. Reine,et al.  Two-Layer LPE Hgcdte P-on-n 8-18μm Photodiodes , 1990 .

[27]  W. E. Tennant,et al.  Liquid phase epitaxial growth of large area Hg1−xCdxTe epitaxial layers , 1984 .

[28]  J. Mroczkowski,et al.  Photoabsorptance and electron lifetime measurement in HgCdTe , 1985 .

[29]  P. R. Emtage,et al.  Fast and slow surface electrons in HgCdTe , 1989 .

[30]  C. R. Helms,et al.  Composition, growth mechanism, and stability of anodic fluoride films on Hg1−xCdxTe , 1991 .

[31]  M. Reine,et al.  Characterization of anisotype and isotype Hg0.8Cd0.2Te/CdTe heterojunctions , 1985 .

[32]  J. Mroczkowski,et al.  Optical absorption edge in Hg0.7 Cd0.3Te , 1983 .

[33]  C. R. Helms,et al.  Physical and chemical properties of the anodic oxide/HgCdTe interface , 1989 .

[34]  M. E. Harper,et al.  Doping and composition profiling in Hg1−xCdxTe by the graded capacitance‐voltage method , 1987 .

[35]  W. M. Higgins,et al.  Standard relationships in the properties of Hg1−xCdxTe , 1989 .

[36]  D. Smith Theory of generation-recombination noise in intrinsic photoconductors , 1982 .

[37]  D. Smith Theory of generation‐recombination noise and responsitivity in overlap structure photoconductors , 1983 .

[38]  D. Polla,et al.  Observation of deep levels in Hg1−xCdxTe with optical modulation spectroscopy , 1982 .

[39]  Tse Tung,et al.  Infinite-melt vertical liquid-phase epitaxy of HgCdTe from Hg solution: Status and prospects , 1988 .

[40]  R. Balcerak,et al.  Mercury cadmium telluride material requirements for infrared systems , 1992 .

[41]  A. Rogalski,et al.  Performance of p+−n HgCdTe photodiodes , 1992 .

[42]  A. Rogalski Analysis of the R0A product in n+-p Hg1−xCdxTe photodiodes , 1988 .

[43]  Luigi Colombo,et al.  Minority‐carrier lifetime in indium‐doped n‐type Hg0.78Cd0.22Te liquid‐phase‐epitaxial films , 1992 .

[44]  C. C. Wang Mercury cadmium telluride junctions grown by liquid phase epitaxy , 1991 .

[45]  Austin J. Brouns,et al.  Noncontact lifetime characterization technique for LWIR HgCdTe using transient millimeter-wave reflectance , 1991, Defense, Security, and Sensing.

[46]  R. Graft,et al.  Surface and interface recombination in thin film HgCdTe photoconductors , 1983 .

[47]  M. B. Reine,et al.  Key issues in HgCdTe‐based focal plane arrays: An industry perspective , 1992 .

[48]  J. Schmit,et al.  Energy gap versus alloy composition and temperature in Hg1−xCdxTe , 1982 .

[49]  R. E. Burgess Fluctuations of the Numbers of Electrons and Holes in a Semiconductor , 1955 .

[50]  Yael Nemirovsky,et al.  Passivation of mercury cadmium telluride surfaces , 1989 .

[51]  F. Madarasz,et al.  Valence‐band barrier formation in graded Hg1−xCdxTe heterojunctions with a valence‐band offset included , 1989 .

[52]  C. Viswanathan,et al.  Compositional analysis of HgCdTe epitaxial layers using secondary ion mass spectrometry , 1992 .

[53]  T. Tung,et al.  Liquid-Phase Epitaxy of Hg 1−x Cd x Te from Hg Solution: A Route to Infrared Detector Structures , 1986 .

[54]  M. A. Kinch,et al.  Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .