Donor-Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical-Structure Modifications on the Electronic and Optical Properties

We systematically investigate at the density functional theory level how changes to the chemical structure of donor–acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers.

[1]  M. Leclerc,et al.  Breaking Down the Problem: Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks , 2012 .

[2]  Christoph J. Brabec,et al.  High Photovoltaic Performance of a Low‐Bandgap Polymer , 2006 .

[3]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[4]  O. Inganäs,et al.  Design, Synthesis and Properties of Low Band Gap Polyfluorenes for Photovoltaic Devices , 2005 .

[5]  Jean Roncali,et al.  Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications , 2007 .

[6]  Noel M. O'Boyle,et al.  Computational Design and Selection of Optimal Organic Photovoltaic Materials , 2011 .

[7]  Antonio Facchetti,et al.  π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications† , 2011 .

[8]  H. Sirringhaus,et al.  A Selenophene‐Based Low‐Bandgap Donor–Acceptor Polymer Leading to Fast Ambipolar Logic , 2012, Advanced materials.

[9]  Mark S. Gordon,et al.  Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements , 1982 .

[10]  M. Ratner,et al.  Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. , 2008, Journal of the American Chemical Society.

[11]  Yong Cao,et al.  Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices , 2005 .

[12]  J. Gierschner,et al.  Electronic structure of small band gap oligomers based on cyclopentadithiophenes and acceptor units , 2009 .

[13]  Li Yang,et al.  Theoretical study on electronic structure and optical properties of novel donor–acceptor conjugated copolymers derived from benzothiadiazole and benzoselenadiazole , 2007 .

[14]  Gang Li,et al.  Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. , 2009, Journal of the American Chemical Society.

[15]  N. S. Sariciftci,et al.  Conjugated polymer-based organic solar cells. , 2007, Chemical reviews.

[16]  Fine-Tuning of Molecular Energy Level of Alternating Copolymers On the basis of [1,2,5]Thiadiazolo[3,4-g]quinoxaline Derivatives for Polymer Photovoltaics , 2012 .

[17]  Zhiyuan Xie,et al.  Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance , 2009 .

[18]  M. Stylianakis,et al.  Bulk heterojunction organic photovoltaic devices based on low band gap small molecule BTD-TNP and perylene-anthracene diimide , 2009 .

[19]  A. Jen,et al.  Highly efficient fluorene- and benzothiadiazole-based conjugated copolymers for polymer light-emitting diodes , 2002 .

[20]  Takakazu Yamamoto,et al.  Preparation and properties of new .pi.-conjugated poly(quinoxaline-5,8-diyl) and poly(2,3-diethylquinoxaline-5,8-diyl). Enhancement of electron-accepting properties of poly(arylenes) by introduction of imine nitrogen , 1993 .

[21]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[22]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[23]  Zhe Li,et al.  Transient photocurrent measurements of PCDTBT:PC70BM and PCPDTBT:PC70BM Solar Cells: Evidence for charge trapping in efficient polymer/fullerene blends , 2011 .

[24]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[25]  Mario Leclerc,et al.  Processable Low-Bandgap Polymers for Photovoltaic Applications† , 2011 .

[26]  Hans Wynberg,et al.  Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines , 1993 .

[27]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[28]  Yang Yang,et al.  Silicon Atom Substitution Enhances Interchain Packing in a Thiophene‐Based Polymer System , 2010, Advanced materials.

[29]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[30]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[31]  Geert Brocks,et al.  Small Band Gap Semiconducting Polymers Made from Dye Molecules: Polysquaraines , 1996 .

[32]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[33]  John R. Reynolds,et al.  A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. , 2009, Journal of the American Chemical Society.

[34]  Chen Li,et al.  Polyphenylene-based materials for organic photovoltaics. , 2010, Chemical reviews.

[35]  G. Sharma,et al.  Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells , 2011 .

[36]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d]pyrrole , 2008 .

[37]  C. McNeill,et al.  Efficient Polythiophene/Polyfluorene Copolymer Bulk Heterojunction Photovoltaic Devices: Device Physics and Annealing Effects , 2008 .

[38]  Yongfang Li,et al.  Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility , 2008 .

[39]  A. Facchetti,et al.  A high-mobility electron-transporting polymer for printed transistors , 2009, Nature.

[40]  John R. Reynolds,et al.  Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism , 2010 .

[41]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[42]  H. Sirringhaus,et al.  Silaindacenodithiophene semiconducting polymers for efficient solar cells and high mobility ambipolar transistors , 2011 .

[43]  Lucas Viani,et al.  An oligomer study on small band gap polymers. , 2008, The journal of physical chemistry. A.

[44]  Hans Wynberg,et al.  A new class of small band gap organic polymer conductors , 1992 .

[45]  Alex K.-Y. Jen,et al.  Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione , 2010 .

[46]  S. Beaupré,et al.  Rational Design of Poly(2,7-Carbazole) Derivatives for Photovoltaic Applications , 2011 .

[47]  Wen‐Chang Chen,et al.  Theoretical Electronic Structure and Properties of Alternating Fluorene–Acceptor Conjugated Copolymers and Their Model Compounds , 2006 .

[48]  L. Dai,et al.  Photovoltaic-Active Dithienosilole-Containing Polymers , 2007 .

[49]  Jean-Luc Brédas,et al.  A quantum-chemical perspective into low optical-gap polymers for highly-efficient organic solar cells , 2011 .

[50]  J. Barluenga,et al.  One-Pot Synthesis of Quinoxalines and 2,3-Dihydropyrazines via Oxidative Aminomercuriation of Propargyl Alcohols , 1985 .

[51]  A. Jen,et al.  Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells† , 2011 .

[52]  Yongsheng Chen,et al.  Synthesis and Photovoltaic Properties of a Poly(2,7-carbazole) Derivative Based on Dithienosilole and Benzothiadiazole , 2011 .

[53]  K. Müllen,et al.  Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. , 2009, Journal of the American Chemical Society.

[54]  Li Yang,et al.  The electronic structure and optical properties of carbazole-based conjugated oligomers and polymers: A theoretical investigation , 2006 .

[55]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[56]  Wolfgang Domcke,et al.  Ab initio study of the excited-state coupled electron proton-transfer process in the 2-aminopyridine dimer , 2003 .

[57]  Andreas Dreuw,et al.  Single-reference ab initio methods for the calculation of excited states of large molecules. , 2005, Chemical reviews.

[58]  A. Heeger,et al.  High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. , 2011, Journal of the American Chemical Society.

[59]  P. Shih,et al.  Carbazole-Based Ladder-Type Heptacylic Arene with Aliphatic Side Chains Leading to Enhanced Efficiency of Organic Photovoltaics , 2011 .

[60]  Ryan E. Koehn,et al.  PBC-DFT applied to donor-acceptor copolymers in organic solar cells: Comparisons between theoretical methods and experimental data , 2011 .

[61]  Zhengguo Zhu,et al.  Influence of the Bridging Atom on the Performance of a Low‐Bandgap Bulk Heterojunction Solar Cell , 2010, Advanced materials.

[62]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .

[63]  E. W. Meijer,et al.  Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers , 2001 .

[64]  Y. Yamashita,et al.  Benzobis(thiadiazole)s Containing Hypervalent Sulfur Atoms: Novel Heterocycles with High Electron Affinity and Short Intermolecular Contacts between Heteroatoms , 1994 .

[65]  N. V. Vasilieva,et al.  Redox properties and radical anions of fluorinated 2,1,3‐benzothia(selena)diazoles and related compounds , 2010 .

[66]  Shinuk Cho,et al.  Synthesis and characterization of dithienylbenzobis(thiadiazole)-based low band-gap polymers for organic electronics. , 2011, Chemical Communications.

[67]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[68]  Yong Cao,et al.  Simultaneous Enhancement of Open‐Circuit Voltage, Short‐Circuit Current Density, and Fill Factor in Polymer Solar Cells , 2011, Advanced materials.

[69]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[70]  J. Montgomery,et al.  1,2-Dihydropyrido[3,4-b]pyrazines: structure-activity relationships. , 1983, Journal of Medicinal Chemistry.

[71]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[72]  Robert Graf,et al.  Ultrahigh mobility in polymer field-effect transistors by design. , 2011, Journal of the American Chemical Society.

[73]  Mats Andersson,et al.  High‐Performance Polymer Solar Cells of an Alternating Polyfluorene Copolymer and a Fullerene Derivative , 2003 .

[74]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[75]  N. E. Coates,et al.  Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing , 2007, Science.

[76]  P. Bladon,et al.  Synthesis and spectroscopy of 1,2,5-selenadiazolo-[3.4-b]-pyridine and 1,2,5-selenadiazolo-[3.4-c]-pyridine , 1968 .

[77]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[78]  P. Sonar,et al.  Thiophene-benzothiadiazole-thiophene (D-A-D) based polymers : Effect of donor/acceptor moieties adjacent to D-A-D segment on photophysical and photovoltaic properties , 2011 .

[79]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[80]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[81]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[82]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[83]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[84]  Yang Yang,et al.  Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. , 2008, Journal of the American Chemical Society.

[85]  M. Head‐Gordon,et al.  Systematic optimization of long-range corrected hybrid density functionals. , 2008, The Journal of chemical physics.

[86]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[87]  Jianhui Hou,et al.  Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1-b;3,4-b′]dithiophene-2,6-diyl-alt-2,1,3- benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells , 2009 .

[88]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[89]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[90]  Yunlong Guo,et al.  Low bandgap π‐conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‐property relationship study , 2009 .

[91]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[92]  J. Roncali Synthetic Principles for Bandgap Control in Linear pi-Conjugated Systems. , 1997, Chemical reviews.