Tunneling transport in a few monolayer-thick WS2/graphene heterojunction

This paper demonstrates the high-quality tunnel barrier characteristics and layer number controlled tunnel resistance of a transition metal dichalcogenide (TMD) measuring just a few monolayers in thickness. Investigation of vertical transport in WS2 and MoS2 TMDs in graphene/TMD/metal heterostructures revealed that WS2 exhibits tunnel barrier characteristics when its thickness is between 2 and 5 monolayers, whereas MoS2 experiences a transition from tunneling to thermionic emission transport with increasing thickness within the same range. Tunnel resistance in a graphene/WS2/metal heterostructure therefore increases exponentially with the number of WS2 layers, revealing the tunnel barrier height of WS2 to be 0.37 eV.

[1]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[2]  Yoshihisa Inoue,et al.  Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures , 2014 .

[3]  Kenneth L. Shepard,et al.  Electron tunneling through atomically flat and ultrathin hexagonal boron nitride , 2011 .

[4]  Robert Stratton,et al.  Volt-current characteristics for tunneling through insulating films , 1962 .

[5]  H. Michaelson The work function of the elements and its periodicity , 1977 .

[6]  X. Duan,et al.  Highly flexible electronics from scalable vertical thin film transistors. , 2014, Nano letters (Print).

[7]  K. Kalantar-zadeh,et al.  Characterization of metal contacts for two-dimensional MoS2 nanoflakes , 2013 .

[8]  John G. Simmons,et al.  Generalized Thermal J‐V Characteristic for the Electric Tunnel Effect , 1964 .

[9]  Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. , 2013, Nano letters.

[10]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[11]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[12]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[13]  Kwang S. Kim,et al.  Tuning the graphene work function by electric field effect. , 2009, Nano letters.

[14]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[15]  C. D. Walle,et al.  Effects of strain on band structure and effective masses in MoS$_2$ , 2012 .

[16]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[17]  Hong Jiang Electronic Band Structures of Molybdenum and Tungsten Dichalcogenides by the GW Approach , 2012 .

[18]  N. Peres,et al.  Electron tunneling through ultrathin boron nitride crystalline barriers. , 2012, Nano letters.

[19]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[20]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[21]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[22]  J. Appenzeller,et al.  Toward low-power electronics: tunneling phenomena in transition metal dichalcogenides. , 2014, ACS nano.

[23]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[24]  J. Simmons Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film , 1963 .

[25]  Seung Joo Lee,et al.  Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. , 2013, ACS nano.

[26]  Electrical Spin Injection into Graphene through Monolayer Hexagonal Boron Nitride , 2013, 1305.7095.

[27]  K. Ko'smider,et al.  Electronic properties of the MoS 2 -WS 2 heterojunction , 2012, 1212.0111.

[28]  Takashi Taniguchi,et al.  Quantum Hall effect and Landau-level crossing of Dirac fermions in trilayer graphene , 2011, 1104.0438.

[29]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.