Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.
暂无分享,去创建一个
[1] Da-Wei Pang. Conductivity and diffusion constant in Lifshitz backgrounds , 2009, 0912.2403.
[2] D. Tong,et al. Holographic lattices give the graviton an effective mass. , 2013, Physical review letters.
[3] J. Gauntlett,et al. Novel metals and insulators from holography , 2014, 1401.5077.
[4] S. Hartnoll,et al. Scaling theory of the cuprate strange metals , 2015, 1501.03165.
[5] P. Burikham,et al. Shear viscosity in holography and effective theory of transport without translational symmetry , 2016, 1601.04624.
[6] Kiminad A. Mamo. Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma , 2012, 1205.1797.
[7] S. Trivedi,et al. A strongly coupled anisotropic fluid from dilaton driven holography , 2014, 1406.4874.
[8] J. Polchinski,et al. Four-point function in the IOP matrix model , 2016, 1602.06422.
[9] S. Shenker,et al. Multiple shocks , 2013, 1312.3296.
[10] G. Hooft,et al. The gravitational shock wave of a massless particle , 1985 .
[11] J. Polchinski,et al. Towards strange metallic holography , 2009, 0912.1061.
[12] M. Baggioli,et al. Viscosity bound violation in holographic solids and the viscoelastic response , 2016, 1601.03384.
[13] On gravitational shock waves in curved spacetimes , 1994, hep-th/9408169.
[14] S. Kachru,et al. Gravity Duals of Lifshitz-Like Fixed Points , 2008, 0808.1725.
[15] C. Pillet,et al. Entropy Production , 2020, Encyclopedia of Continuum Mechanics.
[16] S. Shenker,et al. Black holes and the butterfly effect , 2013, Journal of High Energy Physics.
[17] A. Lucas,et al. Incoherent thermal transport from dirty black holes , 2015, 1511.05970.
[18] D. Son,et al. Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. , 2001, Physical review letters.
[19] B. Goutéraux. Charge transport in holography with momentum dissipation , 2014, 1401.5436.
[20] Daniel A. Roberts,et al. Localized shocks , 2014, 1409.8180.
[21] E. Kiritsis,et al. Generalized holographic quantum criticality at finite density , 2011, 1107.2116.
[22] A. Lucas,et al. Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models. , 2015, Physical review letters.
[23] A. Karch. Conductivities for hyperscaling violating geometries , 2014, 1405.2926.
[24] J. Maldacena,et al. Causality constraints on corrections to the graviton three-point coupling , 2014, Journal of High Energy Physics.
[25] NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM CRITICAL POINTS , 1997, cond-mat/9705206.
[26] Benjamin Withers,et al. A simple holographic model of momentum relaxation , 2013, 1311.5157.
[27] Sarah M. Harrison,et al. Aspects of holography for theories with hyperscaling violation , 2012, 1201.1905.
[28] B. Swingle,et al. Hidden Fermi surfaces in compressible states of gauge-gravity duality , 2011, 1112.0573.
[29] S. Hartnoll,et al. Entropy production, viscosity bounds and bumpy black holes , 2016, 1601.02757.
[30] S. Sachdev. Quantum Phase Transitions , 1999 .
[31] D.T.Son,et al. Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics , 2004, hep-th/0405231.
[32] Holography and hydrodynamics: Diffusion on stretched horizons , 2003, hep-th/0309213.
[33] A. Rebhan,et al. Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma. , 2011, Physical review letters.
[34] S. Trivedi,et al. The shear viscosity in anisotropic phases , 2015, 1506.01899.
[35] S. Shenker,et al. Stringy effects in scrambling , 2014, 1412.6087.
[36] Nilanjan Sircar,et al. Extending the scope of holographic mutual information and chaotic behavior , 2016, 1602.07307.
[37] Mike Blake. Universal diffusion in incoherent black holes , 2016, 1604.01754.
[38] Daniel A. Roberts,et al. Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.
[39] A. Ritz,et al. Universal conductivity and central charges , 2008, 0806.0110.
[40] J. Gauntlett,et al. Holographic Q-lattices , 2013, 1311.3292.
[41] A. P. Mackenzie,et al. Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.
[42] D. Tong,et al. Universal Resistivity from Holographic Massive Gravity , 2013, 1308.4970.
[43] J. Maldacena,et al. A bound on chaos , 2015, Journal of High Energy Physics.
[44] Hong Liu,et al. Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm , 2008, 0809.3808.
[45] S. Hartnoll,et al. Theory of universal incoherent metallic transport , 2014, Nature Physics.
[46] E. Kiritsis,et al. Effective holographic theories for low-temperature condensed matter systems , 2010, 1005.4690.
[47] J. Zaanen. Superconductivity: Why the temperature is high , 2004, Nature.
[48] D. W. Robinson,et al. The finite group velocity of quantum spin systems , 1972 .