Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.

We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by D_{c}=Cv_{B}^{2}/(2πT), where v_{B} is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos.

[1]  Da-Wei Pang Conductivity and diffusion constant in Lifshitz backgrounds , 2009, 0912.2403.

[2]  D. Tong,et al.  Holographic lattices give the graviton an effective mass. , 2013, Physical review letters.

[3]  J. Gauntlett,et al.  Novel metals and insulators from holography , 2014, 1401.5077.

[4]  S. Hartnoll,et al.  Scaling theory of the cuprate strange metals , 2015, 1501.03165.

[5]  P. Burikham,et al.  Shear viscosity in holography and effective theory of transport without translational symmetry , 2016, 1601.04624.

[6]  Kiminad A. Mamo Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma , 2012, 1205.1797.

[7]  S. Trivedi,et al.  A strongly coupled anisotropic fluid from dilaton driven holography , 2014, 1406.4874.

[8]  J. Polchinski,et al.  Four-point function in the IOP matrix model , 2016, 1602.06422.

[9]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[10]  G. Hooft,et al.  The gravitational shock wave of a massless particle , 1985 .

[11]  J. Polchinski,et al.  Towards strange metallic holography , 2009, 0912.1061.

[12]  M. Baggioli,et al.  Viscosity bound violation in holographic solids and the viscoelastic response , 2016, 1601.03384.

[13]  On gravitational shock waves in curved spacetimes , 1994, hep-th/9408169.

[14]  S. Kachru,et al.  Gravity Duals of Lifshitz-Like Fixed Points , 2008, 0808.1725.

[15]  C. Pillet,et al.  Entropy Production , 2020, Encyclopedia of Continuum Mechanics.

[16]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[17]  A. Lucas,et al.  Incoherent thermal transport from dirty black holes , 2015, 1511.05970.

[18]  D. Son,et al.  Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. , 2001, Physical review letters.

[19]  B. Goutéraux Charge transport in holography with momentum dissipation , 2014, 1401.5436.

[20]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[21]  E. Kiritsis,et al.  Generalized holographic quantum criticality at finite density , 2011, 1107.2116.

[22]  A. Lucas,et al.  Absence of Disorder-Driven Metal-Insulator Transitions in Simple Holographic Models. , 2015, Physical review letters.

[23]  A. Karch Conductivities for hyperscaling violating geometries , 2014, 1405.2926.

[24]  J. Maldacena,et al.  Causality constraints on corrections to the graviton three-point coupling , 2014, Journal of High Energy Physics.

[25]  NONZERO-TEMPERATURE TRANSPORT NEAR QUANTUM CRITICAL POINTS , 1997, cond-mat/9705206.

[26]  Benjamin Withers,et al.  A simple holographic model of momentum relaxation , 2013, 1311.5157.

[27]  Sarah M. Harrison,et al.  Aspects of holography for theories with hyperscaling violation , 2012, 1201.1905.

[28]  B. Swingle,et al.  Hidden Fermi surfaces in compressible states of gauge-gravity duality , 2011, 1112.0573.

[29]  S. Hartnoll,et al.  Entropy production, viscosity bounds and bumpy black holes , 2016, 1601.02757.

[30]  S. Sachdev Quantum Phase Transitions , 1999 .

[31]  D.T.Son,et al.  Viscosity in Strongly Interacting Quantum Field Theories from Black Hole Physics , 2004, hep-th/0405231.

[32]  Holography and hydrodynamics: Diffusion on stretched horizons , 2003, hep-th/0309213.

[33]  A. Rebhan,et al.  Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma. , 2011, Physical review letters.

[34]  S. Trivedi,et al.  The shear viscosity in anisotropic phases , 2015, 1506.01899.

[35]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[36]  Nilanjan Sircar,et al.  Extending the scope of holographic mutual information and chaotic behavior , 2016, 1602.07307.

[37]  Mike Blake Universal diffusion in incoherent black holes , 2016, 1604.01754.

[38]  Daniel A. Roberts,et al.  Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories. , 2016, Physical review letters.

[39]  A. Ritz,et al.  Universal conductivity and central charges , 2008, 0806.0110.

[40]  J. Gauntlett,et al.  Holographic Q-lattices , 2013, 1311.3292.

[41]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[42]  D. Tong,et al.  Universal Resistivity from Holographic Massive Gravity , 2013, 1308.4970.

[43]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[44]  Hong Liu,et al.  Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm , 2008, 0809.3808.

[45]  S. Hartnoll,et al.  Theory of universal incoherent metallic transport , 2014, Nature Physics.

[46]  E. Kiritsis,et al.  Effective holographic theories for low-temperature condensed matter systems , 2010, 1005.4690.

[47]  J. Zaanen Superconductivity: Why the temperature is high , 2004, Nature.

[48]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .