Large-scale preparation of ultrathin composite polymer electrolytes with excellent mechanical properties and high thermal stability for solid-state lithium-metal batteries

[1]  B. Cheng,et al.  Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers , 2022, Energy Storage Materials.

[2]  Guangmin Zhou,et al.  Crosslinked Nanofiber‐Reinforced Solid‐State Electrolytes with Polysulfide Fixation Effect Towards High Safety Flexible Lithium–Sulfur Batteries , 2022, Advanced Functional Materials.

[3]  D. Mitlin,et al.  Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries , 2022, Joule.

[4]  Y. Ye,et al.  Scalable, Ultrathin, and High‐Temperature‐Resistant Solid Polymer Electrolytes for Energy‐Dense Lithium Metal Batteries , 2022, Advanced Energy Materials.

[5]  Ping Xue,et al.  Reducing the crystallinity of PEO-based composite electrolyte for high performance lithium batteries , 2022, Composites Part B: Engineering.

[6]  Xiaogang Han,et al.  A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries , 2022, Energy Storage Materials.

[7]  Luyi Yang,et al.  PIM‐1 as a Multifunctional Framework to Enable High‐Performance Solid‐State Lithium–Sulfur Batteries , 2021, Advanced Functional Materials.

[8]  Chen‐Zi Zhao,et al.  Critical Current Density in Solid‐State Lithium Metal Batteries: Mechanism, Influences, and Strategies , 2021, Advanced Functional Materials.

[9]  M. Winter,et al.  In situ polymerization process: an essential design tool for lithium polymer batteries , 2021 .

[10]  Yang Zhao,et al.  All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design , 2021 .

[11]  Xiaofei Yang,et al.  Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries , 2020, Energy & Environmental Science.

[12]  Lixia Yuan,et al.  Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries , 2020 .

[13]  Chunsheng Wang,et al.  Lithium/Sulfide All‐Solid‐State Batteries using Sulfide Electrolytes , 2020, Advanced materials.

[14]  P. Mukherjee,et al.  Probing the Thermal Safety of Li Metal Batteries , 2020 .

[15]  Xin-bo Zhang,et al.  In Situ Designing a Gradient Li+ Capture and Quasi‐Spontaneous Diffusion Anode Protection Layer toward Long‐Life Li−O2 Batteries , 2020, Advanced materials.

[16]  Xiaofei Yang,et al.  Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries , 2020 .

[17]  Adelaide M. Nolan,et al.  Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. , 2020, Chemical reviews.

[18]  Ellen Ivers-Tiffée,et al.  Benchmarking the performance of all-solid-state lithium batteries , 2020 .

[19]  L. Archer,et al.  Designing solid-state electrolytes for safe, energy-dense batteries , 2020, Nature Reviews Materials.

[20]  D. Mecerreyes,et al.  Toward High‐Energy‐Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes , 2020, Advanced materials.

[21]  Shigang Sun,et al.  Asymmetric-Structure Design of Electrolyte with Flexibility and Lithium Dendrite-Suppression Ability for Solid-State Lithium Batteries. , 2019, ACS applied materials & interfaces.

[22]  Liquan Chen,et al.  Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. , 2019, Chemical reviews.

[23]  Lixia Yuan,et al.  Ultrathin, Flexible Polymer Electrolyte for Cost‐Effective Fabrication of All‐Solid‐State Lithium Metal Batteries , 2019, Advanced Energy Materials.

[24]  M. Armand,et al.  Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects , 2019, Chem.

[25]  G. Cui,et al.  Intermolecular Chemistry in Solid Polymer Electrolytes for High‐Energy‐Density Lithium Batteries , 2019, Advanced materials.

[26]  Christian Masquelier,et al.  Fundamentals of inorganic solid-state electrolytes for batteries , 2019, Nature Materials.

[27]  Xiaokun Zhang,et al.  Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries , 2019, Nature Nanotechnology.

[28]  Yi Cui,et al.  Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries , 2019, Chem.

[29]  B. Améduri,et al.  Polytetrafluoroethylene: Synthesis and Characterization of the Original Extreme Polymer. , 2019, Chemical reviews.

[30]  Xin-Bing Cheng,et al.  Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes , 2019, Chem.

[31]  Yayuan Liu,et al.  A Silica‐Aerogel‐Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus , 2018, Advanced materials.

[32]  Jun Lu,et al.  30 Years of Lithium‐Ion Batteries , 2018, Advanced materials.

[33]  Jong‐Chan Lee,et al.  2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries , 2017 .

[34]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[35]  Mingxue Tang,et al.  Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. , 2016, Angewandte Chemie.

[36]  Wei Liu,et al.  High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). , 2016, Nano letters.

[37]  Xiangyang Zhou,et al.  Effect of hot pressing on the ionic conductivity of the PEO/LiCF3SO3 based electrolyte membranes , 2011 .

[38]  R. Kumar,et al.  150 MeV Nickel ion beam irradiation effects on polytetrafluoroethylene (PTFE) polymer , 2010 .

[39]  E. B. Orler,et al.  The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE) , 2006 .

[40]  Eric N. Brown,et al.  The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE) , 2005 .

[41]  Y. W. Kim,et al.  Conductivity relaxation in the PEO–salt polymer electrolytes , 2004 .

[42]  P. Bruce,et al.  Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. , 2003, Journal of the American Chemical Society.

[43]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[44]  P. Bruce,et al.  Crystal Structure of the Polymer Electrolyte Poly(ethylene oxide)3:LiCF3SO3 , 1993, Science.

[45]  Peter Kirkegaard,et al.  Positronfit Extended: A New Version of a Program for Analysing Positron Lifetime Spectra , 1984 .

[46]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .