Performance of flip supertree construction with a heuristic algorithm.

Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (flips) to the matrix representation of the set of input trees to resolve their incompatibilities. A previous flip supertree algorithm was limited to finding exact solutions and was only feasible for small input trees. We developed a heuristic algorithm for the flip supertree problem suitable for much larger input trees. We used a series of 48- and 96-taxon simulations to compare supertrees constructed with the flip supertree heuristic algorithm with supertrees constructed using other approaches, including MinCut (MC), modified MC (MMC), and matrix representation with parsimony (MRP). Flip supertrees are generally far more accurate than supertrees constructed using MC or MMC algorithms and are at least as accurate as supertrees built with MRP. The flip supertree method is therefore a viable alternative to other supertree methods when the number of taxa is large.

[1]  O. Bininda-Emonds,et al.  Factors influencing phylogenetic inference: a case study using the mammalian carnivores. , 2000, Molecular phylogenetics and evolution.

[2]  David A. Baum,et al.  Phylogeny and the evolution of flower symmetry in the Asteridae , 1998 .

[3]  M. Steel The complexity of reconstructing trees from qualitative characters and subtrees , 1992 .

[4]  D. Robinson,et al.  Comparison of phylogenetic trees , 1981 .

[5]  David Bryant,et al.  A classification of consensus methods for phylogenetics , 2001, Bioconsensus.

[6]  M Steel,et al.  Simple but fundamental limitations on supertree and consensus tree methods. , 2000, Systematic biology.

[7]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[8]  Alfred V. Aho,et al.  Inferring a Tree from Lowest Common Ancestors with an Application to the Optimization of Relational Expressions , 1981, SIAM J. Comput..

[9]  M. Gouy,et al.  A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. , 2002, Genome research.

[10]  Gareth Nelson,et al.  Reconstructing the Past: Parsimony, Evolution, and Inference , 1989 .

[11]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[12]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  Andrew Rambaut,et al.  Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..

[14]  Roderic D. M. Page,et al.  Modified Mincut Supertrees , 2002, WABI.

[15]  Peter Godfrey-Smith,et al.  Reconstructing the Past: Parsimony, Evolution, and Inference , 1989 .

[16]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[17]  M. Kennedy,et al.  SEABIRD SUPERTREES: COMBINING PARTIAL ESTIMATES OF PROCELLARIIFORM PHYLOGENY , 2002 .

[18]  J. Clobert,et al.  Nest Predation and Avian Life-History Evolution in Europe Versus North America: A Possible Role of Humans? , 1996, The American Naturalist.

[19]  William H. E. Day,et al.  Analysis of Quartet Dissimilarity Measures Between Undirected Phylogenetic Trees , 1986 .

[20]  J. L. Gittleman,et al.  The (Super)Tree of Life: Procedures, Problems, and Prospects , 2002 .

[21]  onrad,et al.  Resolution of a Supertree / Supermatrix Paradox , 2002 .

[22]  Elliott Sober,et al.  Reconstructing the Past: Parsimony, Evolution, and Inference , 1989 .

[23]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[24]  J. Doyle,et al.  Gene Trees and Species Trees: Molecular Systematics as One-Character Taxonomy , 1992 .

[25]  B. Baum Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees , 1992 .

[26]  Nicolas Salamin,et al.  Building supertrees: an empirical assessment using the grass family (Poaceae). , 2002, Systematic biology.

[27]  M. Steel,et al.  Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees , 2001 .

[28]  M. Ragan Phylogenetic inference based on matrix representation of trees. , 1992, Molecular phylogenetics and evolution.

[29]  Michael M. Miyamoto,et al.  Molecular and Morphological Supertrees for Eutherian (Placental) Mammals , 2001, Science.

[30]  H. Linder Vicariance, climate change, anatomy and phylogeny of Restionaceae , 2000 .

[31]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[32]  Andy Purvis,et al.  Phylogenetic supertrees: Assembling the trees of life. , 1998, Trends in ecology & evolution.

[33]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[34]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[35]  A. Ortolani Spots, stripes, tail tips and dark eyes: Predicting the function of carnivore colour patterns using the comparative method , 1999 .

[36]  F. H. C. Marriott,et al.  Analyse de Donnees et Informatique , 1982 .

[37]  Michael J. Sanderson,et al.  R8s: Inferring Absolute Rates of Molecular Evolution, Divergence times in the Absence of a Molecular Clock , 2003, Bioinform..

[38]  Michael J. Sanderson,et al.  MOLECULAR PHYLOGENY OF THE "TEMPERATE HERBACEOUS TRIBES" OF PAPILIONOID LEGUMES: A SUPERTREE APPROACH , 2000 .

[39]  G. Plunkett RELATIONSHIP OF THE ORDER APIALES TO SUBCLASS ASTERIDAE : A RE[hyphen]EVALUATION OF MORPHOLOGICAL CHARACTERS BASED ON INSIGHTS FROM MOLECULAR DATA , 2001 .

[40]  David D. Ackerly,et al.  Flammability and serotiny as strategies: correlated evolution in pines , 2001 .

[41]  Andy Purvis,et al.  A Modification to Baum and Ragan's Method for Combining Phylogenetic Trees , 1995 .

[42]  Charles Semple,et al.  A supertree method for rooted trees , 2000, Discret. Appl. Math..

[43]  David Fernández-Baca,et al.  Flipping: A supertree construction method , 2001, Bioconsensus.

[44]  Michael J Benton,et al.  A genus-level supertree of the Dinosauria , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  J. L. Gittleman,et al.  Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia) , 1999, Biological reviews of the Cambridge Philosophical Society.

[46]  Peter H. Raven,et al.  Advances in legume systematics , 1981 .

[47]  M. Donoghue,et al.  PHYLOGENIES AND THE ANALYSIS OF EVOLUTIONARY SEQUENCES, WITH EXAMPLES FROM SEED PLANTS , 1989, Evolution; international journal of organic evolution.