Harnessing Interfacial Electron Transfer in Redox Flow Batteries

Summary Redox flow batteries (RFBs) have garnered increasing attention for their potential to enable the widespread adoption of renewable electricity. However, a critical need associated with the continued development of this technology involves designing electrode-electrolyte interfaces that exhibit rapid, stable electron transfer kinetics. This targeted review outlines key challenges associated with measuring and enhancing the electron transfer kinetics of established and emerging flow battery active materials. We discuss several promising opportunities for advancing flow battery science and technology using the tools of applied electroanalysis and catalysis science. These challenges and opportunities are broadly relevant for future research directed at advancing the commercial adoption of RFBs for grid-scale energy storage.

[1]  Yu Ding,et al.  Molecular engineering of organic electroactive materials for redox flow batteries. , 2018, Chemical Society reviews.

[2]  Bin Li,et al.  Cost and performance model for redox flow batteries , 2014 .

[3]  Vilayanur V. Viswanathan,et al.  Energy Storage Technology and Cost Characterization Report , 2019 .

[4]  Jingyu Xi,et al.  A comparative study of Nafion series membranes for vanadium redox flow batteries , 2016 .

[5]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[6]  Koichi Aoki,et al.  Theory of ultramicroelectrodes , 1993 .

[7]  Maria Skyllas-Kazacos,et al.  Water transfer behaviour across cation exchange membranes in the vanadium redox battery , 2003 .

[8]  Alfred J. Cavallo,et al.  Energy Storage Technologies for Utility Scale Intermittent Renewable Energy Systems , 2001 .

[9]  M. Pritzker,et al.  In situ polarization study of zinc–cerium redox flow batteries , 2020 .

[10]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[11]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[12]  Fikile R. Brushett,et al.  The Critical Role of Supporting Electrolyte Selection on Flow Battery Cost , 2017 .

[13]  David G. Kwabi,et al.  A Phosphonate‐Functionalized Quinone Redox Flow Battery at Near‐Neutral pH with Record Capacity Retention Rate , 2019, Advanced Energy Materials.

[14]  R. Wightman,et al.  Ultrafast Voltammetry and Voltammetry in Highly Resistive Solutions with Microvoltammetric Electrodes , 1984 .

[15]  Yongchai Kwon,et al.  Performance evaluation of aqueous organic redox flow battery using anthraquinone-2,7-disulfonic acid disodium salt and potassium iodide redox couple , 2019, Chemical Engineering Journal.

[16]  Eugene E. Kwan,et al.  Extending the Lifetime of Organic Flow Batteries via Redox State Management. , 2019, Journal of the American Chemical Society.

[17]  L. F. Arenas,et al.  The Importance of Cell Geometry and Electrolyte Properties to the Cell Potential of Zn-Ce Hybrid Flow Batteries , 2016 .

[18]  M. Neergat,et al.  Resolving charge-transfer and mass-transfer processes of VO2+/VO2+ redox species across the electrode/electrolyte interface using electrochemical impedance spectroscopy for vanadium redox flow battery , 2020, RSC advances.

[19]  Mike L. Perry,et al.  The Influence of Electrode and Channel Configurations on Flow Battery Performance , 2014 .

[20]  Xinping Qiu,et al.  Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method , 2017 .

[21]  D. N. Buckley,et al.  Effect of Cathodic and Anodic Treatments of Carbon on the Electrode Kinetics of VIV/VV Oxidation-Reduction , 2015 .

[22]  R. Menéndez,et al.  Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery , 2011 .

[23]  Maria Skyllas-Kazacos,et al.  Progress in Flow Battery Research and Development , 2011 .

[24]  T. Cook,et al.  Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc05295b , 2018, Chemical science.

[25]  Qinghua Liu,et al.  Dramatic performance gains in vanadium redox flow batteries through modified cell architecture , 2012 .

[26]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[27]  Hajimu Yamana,et al.  Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery , 2002 .

[28]  Akeel A. Shah,et al.  A Dynamic Unit Cell Model for the All-Vanadium Flow Battery , 2011 .

[29]  David M. Reed,et al.  Materials and Systems for Organic Redox Flow Batteries: Status and Challenges , 2017 .

[30]  T. L. Liu,et al.  Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. , 2018, Chemical communications.

[31]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[32]  K. B. Oldham,et al.  Kinetic parameters from steady-state voltammograms at microdisc electrodes , 1989 .

[33]  Mass Transport Optimization for Redox Flow Battery Design , 2020 .

[34]  R. Savinell,et al.  Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries , 2015 .

[35]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[36]  S. Narayanan,et al.  A Durable, Inexpensive and Scalable Redox Flow Battery Based on Iron Sulfate and Anthraquinone Disulfonic Acid , 2020 .

[37]  J. Giner,et al.  Screening of redox couples and electrode materials , 1976 .

[38]  H. Chen,et al.  Study on Hydrogen Evolution Reaction at a Graphite Electrode in the All-Vanadium Redox Flow Battery , 2012, International Journal of Electrochemical Science.

[39]  T. Zawodzinski,et al.  Species Uptake and Mass Transport in Membranes for Vanadium Redox Flow Batteries , 2017 .

[40]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[41]  Venkatasubramanian Viswanathan,et al.  Quantifying the promise of ‘beyond’ Li–ion batteries , 2015 .

[42]  David G. Kwabi,et al.  Rational Evaluation and Cycle Life Improvement of Quinone-Based Aqueous Flow Batteries Guided by In-Line Optical Spectrophotometry , 2018 .

[43]  M. Skyllas-Kazacos,et al.  Vanadium redox cell electrolyte optimization studies , 1990 .

[44]  Brian J. Koeppel,et al.  Performance of a low cost interdigitated flow design on a 1 kW class all vanadium mixed acid redox flow battery , 2016 .

[45]  Akira Negishi,et al.  Vanadium redox reactions and carbon electrodes for vanadium redox flow battery , 1991 .

[46]  Fikile R. Brushett,et al.  Towards Low Resistance Nonaqueous Redox Flow Batteries , 2017 .

[47]  Lelia Cosimbescu,et al.  Anthraquinone with tailored structure for a nonaqueous metal-organic redox flow battery. , 2012, Chemical communications.

[48]  Matthew M. Mench,et al.  In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries , 2013 .

[49]  Venkatasubramanian Viswanathan,et al.  Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities , 2017 .

[50]  Dennice F. Gayme,et al.  Grid-scale energy storage applications in renewable energy integration: A survey , 2014 .

[51]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[52]  Yongdan Li,et al.  Enhancing the performance of an all-organic non-aqueous redox flow battery , 2019 .

[53]  Qinghua Liu,et al.  High Performance Vanadium Redox Flow Batteries with Optimized Electrode Configuration and Membrane Selection , 2012 .

[54]  Jie Bao,et al.  Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadi , 2011 .

[55]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[56]  Jeffrey Greeley,et al.  Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design. , 2016, Annual review of chemical and biomolecular engineering.

[57]  T. M. Gür Correction: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage , 2018 .

[58]  C. Flox,et al.  Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application , 2017 .

[59]  T. Zawodzinski,et al.  Hydrogen evolution at the negative electrode of the all-vanadium redox flow batteries , 2014 .

[60]  N. Nioradze,et al.  Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope. , 2011, Analytical chemistry.

[61]  James R. McKone,et al.  Flow Battery Electroanalysis: Hydrodynamic Voltammetry of Aqueous Fe(III/II) Redox Couples at Polycrystalline Pt and Au , 2018, ACS Applied Energy Materials.

[62]  Maria Skyllas-Kazacos,et al.  Characteristics and performance of 1 kW UNSW vanadium redox battery , 1991 .

[63]  Stephen E. Creager,et al.  Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions , 2002 .

[64]  D. N. Buckley,et al.  Electrode Kinetics of Vanadium Flow Batteries: Contrasting Responses of VII-VIII and VIV-VV to Electrochemical Pretreatment of Carbon , 2016 .

[65]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. , 2004, The journal of physical chemistry. B.

[66]  Jie Bao,et al.  Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery , 2012 .

[67]  J. Buriak,et al.  Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters. , 2020, ACS nano.

[68]  M. Broussely,et al.  Main aging mechanisms in Li ion batteries , 2005 .

[69]  Gareth Kear,et al.  Development of the all‐vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects , 2012 .

[70]  C. Roth,et al.  Surface properties and graphitization of polyacrylonitrile based fiber electrodes affecting the negative half-cell reaction in vanadium redox flow batteries , 2016 .

[71]  C. Low,et al.  Progress in redox flow batteries, remaining challenges and their applications in energy storage , 2012 .

[72]  Chuanwei Yan,et al.  In-situ measurement of electrode kinetics in porous electrode for vanadium flow batteries using symmetrical cell design , 2020 .

[73]  Wei Wang,et al.  Porous Polymeric Composite Separators for Redox Flow Batteries , 2015 .

[74]  Flow Battery Electroanalysis. 2. Influence of Surface Pretreatment on Fe(III/II) Redox Chemistry at Carbon Electrodes , 2018, The Journal of Physical Chemistry C.

[75]  Fikile R. Brushett,et al.  On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries , 2020 .

[76]  P. G. Rasmussen,et al.  Evaluation of an Aqueous Biphenol- and Anthraquinone-Based Electrolyte Redox Flow Battery , 2019, ACS Applied Energy Materials.

[77]  Maria Skyllas-Kazacos,et al.  Evaluation of electrode materials for vanadium redox cell , 1987 .

[78]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[79]  Chenxi Sun,et al.  Simulation of the self-discharge process in vanadium redox flow battery , 2011 .

[80]  T. J. Davies,et al.  High-Performance Vanadium Redox Flow Batteries with Graphite Felt Electrodes , 2018 .

[81]  Robert J. Forster,et al.  Microelectrodes: new dimensions in electrochemistry , 1994 .

[82]  T. Zhao,et al.  A high power density and long cycle life vanadium redox flow battery , 2020 .

[83]  Thomas A. Zawodzinski,et al.  Polarization curve analysis of all-vanadium redox flow batteries , 2011 .

[84]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[85]  Matthew M. Mench,et al.  Probing Electrode Losses in All-Vanadium Redox Flow Batteries with Impedance Spectroscopy , 2013 .

[86]  U. Stimming,et al.  Electron transfer kinetics of the VO2+/VO2+ – Reaction on multi-walled carbon nanotubes , 2013 .

[87]  D. Cheng,et al.  The influence of oxidative pretreatment of graphite electrodes on the catalysis of the Cr3+/Cr2+ and Fe3+/Fe2+ redox reactions , 1985 .

[88]  T. Liu,et al.  A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. , 2018, Angewandte Chemie.

[89]  T. Zhao,et al.  In-situ investigation of hydrogen evolution behavior in vanadium redox flow batteries , 2017 .

[90]  Hamidreza Zareipour,et al.  Energy storage for mitigating the variability of renewable electricity sources: An updated review , 2010 .

[91]  Tomoo Yamamura,et al.  Electron-Transfer Kinetics of Np3 + ∕ Np4 + , NpO2 + ∕ NpO2 2 + , V2 + ∕ V3 + , and VO2 + ∕ VO2 + at Carbon Electrodes , 2005 .

[92]  Fikile R. Brushett,et al.  Quantifying Mass Transfer Rates in Redox Flow Batteries , 2017 .

[93]  R. McCreery,et al.  Electron Transfer Kinetics of Aquated Fe + 3 / + 2, Eu + 3 / + 2, and V + 3 / + 2 at Carbon Electrodes Inner Sphere Catalysis by Surface Oxides , 1993 .

[94]  Zhongbao Wei,et al.  Real-time monitoring of capacity loss for vanadium redox flow battery , 2018, Journal of Power Sources.

[95]  J. Savéant,et al.  Ultramicroelectrodes for fast electrochemical kinetics , 1990 .

[96]  Alán Aspuru-Guzik,et al.  UV-Vis spectrophotometry of quinone flow battery electrolyte for in situ monitoring and improved electrochemical modeling of potential and quinhydrone formation. , 2017, Physical chemistry chemical physics : PCCP.

[97]  David G. Kwabi,et al.  Alkaline Quinone Flow Battery with Long Lifetime at pH 12 , 2018, Joule.

[98]  T. Zawodzinski,et al.  High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation , 2015 .

[99]  Jesse S. Wainright,et al.  Kinetic Study of Electrochemical Treatment of Carbon Fiber Microelectrodes Leading to In Situ Enhancement of Vanadium Flow Battery Efficiency , 2016 .

[100]  Volodymyr A. Yartys,et al.  Exploits, advances and challenges benefiting beyond Li-ion battery technologies , 2020, 2005.04963.

[101]  M. Mench Flow Batteries I , 2015 .

[102]  Jeffrey S. Moore,et al.  Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density , 2018 .

[103]  K. Pinkwart,et al.  Aspects of electron transfer processes in vanadium redox-flow batteries , 2020 .

[104]  S. Jayanti,et al.  Effect of flow field on the performance of an all-vanadium redox flow battery , 2016 .

[105]  K. B. Oldham,et al.  Comparison of voltammetric steady states at hemispherical and disc microelectrodes , 1988 .

[106]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[107]  A. Bard,et al.  Application of the Koutecký-Levich Method to the Analysis of Steady State Voltammograms with Ultramicroelectrodes. , 2016, Analytical chemistry.

[108]  Arumugam Manthiram,et al.  An Outlook on Lithium Ion Battery Technology , 2017, ACS central science.

[109]  Maria Skyllas-Kazacos,et al.  Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes , 1992 .

[110]  Hongli Zhu,et al.  Mass Transfer and Reaction Kinetic Enhanced Electrode for High‐Performance Aqueous Flow Batteries , 2019, Advanced Functional Materials.

[111]  Thomas A. Zawodzinski,et al.  Concentration Dependence of VO2+ Crossover of Nafion for Vanadium Redox Flow Batteries , 2013 .

[112]  S. Narayanan,et al.  High-Performance Aqueous Organic Flow Battery with Quinone-Based Redox Couples at Both Electrodes , 2016 .

[113]  Xindong Wang,et al.  Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery , 2007 .

[114]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[115]  T. Zhao,et al.  A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries , 2016 .

[116]  T. Turek,et al.  Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – A review , 2018 .

[117]  R. McCreery,et al.  Facile Preparation of Active Glassy Carbon Electrodes with Activated Carbon and Organic Solvents , 1999 .

[118]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[119]  R. McCreery,et al.  Surface Chemistry and Electron-Transfer Kinetics of Hydrogen-Modified Glassy Carbon Electrodes , 1999 .

[120]  M. Skyllas-Kazacos,et al.  Conductive carbon-polypropylene composite electrodes for vanadium redox battery , 1995 .

[121]  T. Zhao,et al.  Performance of a vanadium redox flow battery with and without flow fields , 2014 .

[122]  Fikile R. Brushett,et al.  Performance and cost characteristics of multi-electron transfer, common ion exchange non-aqueous redox flow batteries , 2016 .

[123]  M. Aziz,et al.  Flow Battery Molecular Reactant Stability Determined by Symmetric Cell Cycling Methods , 2018 .

[124]  Chris Menictas,et al.  Redox flow batteries for medium- to large-scale energy storage , 2013 .

[125]  Xuelong Zhou,et al.  Critical transport issues for improving the performance of aqueous redox flow batteries , 2017 .

[126]  Chulheung Bae,et al.  Chromium redox couples for application to redox flow batteries , 2002 .

[127]  Maria Skyllas-Kazacos,et al.  Characteristics of a new all-vanadium redox flow battery , 1988 .

[128]  Jens Noack,et al.  Techno-Economic Modeling and Analysis of Redox Flow Battery Systems , 2016 .

[129]  Fikile R. Brushett,et al.  High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries , 2016 .

[130]  H. Abruña,et al.  Kinetics of interfacial electron transfer at single-layer graphene electrodes in aqueous and nonaqueous solutions. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[131]  Ke Gong,et al.  A zinc–iron redox-flow battery under $100 per kW h of system capital cost , 2015 .

[132]  D. N. Buckley,et al.  Electrode Kinetics in All-Vanadium Flow Batteries: Effects of Electrochemical Treatment , 2015 .

[133]  Toshio SHIGEMATSU,et al.  Redox Flow Battery for Energy Storage , 2011 .

[134]  M. A. Reid,et al.  Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium/redox flow cells , 1977 .

[135]  R. M. Cotta,et al.  Mass transport enhancement in redox flow batteries with corrugated fluidic networks , 2017 .

[136]  Haichao Liu,et al.  Studies on cerium (Ce4+/Ce3+)–vanadium(V2+/V3+) redox flow cell—cyclic voltammogram response of Ce4+/Ce3+ redox couple in H2SO4 solution , 2004 .

[137]  S. Iwasa,et al.  A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application , 2002 .

[138]  Fikile R. Brushett,et al.  4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl as a model organic redox active compound for nonaqueous flow batteries , 2016 .

[139]  U. Stimming,et al.  Composition of the Electrode Determines Which Half-Cell’s Rate Constant is Higher in a Vanadium Flow Battery , 2016 .

[140]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[141]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[142]  E. Barsoukov,et al.  Effect of Low‐Temperature Conditions on Passive Layer Growth on Li Intercalation Materials In Situ Impedance Study , 1998 .

[143]  Jonghyun Park,et al.  A novel cell design of vanadium redox flow batteries for enhancing energy and power performance , 2018, Applied Energy.

[144]  J. Alexander,et al.  Rechargeable redox flow batteries: flow fields, stacks and design considerations. , 2018, Chemical Society reviews.

[145]  J. Nørskov,et al.  Fundamental Concepts in Heterogeneous Catalysis , 2014 .

[146]  Kevin G. Gallagher,et al.  Estimating the system price of redox flow batteries for grid storage , 2015 .

[147]  Maria Skyllas-Kazacos,et al.  State of charge monitoring methods for vanadium redox flow battery control , 2011 .

[148]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[149]  D. N. Buckley,et al.  Towards Optical Monitoring of Vanadium Redox Flow Batteries (VRFBs): An Investigation of the Underlying Spectroscopy , 2014 .

[150]  Wei Wang,et al.  Material design and engineering of next-generation flow-battery technologies , 2017 .

[151]  L. H. Thaller,et al.  Electrically rechargeable REDOX flow cell , 1976 .

[152]  Xuelong Zhou,et al.  A high-performance flow-field structured iron-chromium redox flow battery , 2016 .

[153]  Huamin Zhang,et al.  Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack , 2006 .

[154]  R. McCreery,et al.  Self-catalysis by Catechols and Quinones during Heterogeneous Electron Transfer at Carbon Electrodes , 2000 .

[155]  R. Schweiss,et al.  Parasitic Hydrogen Evolution at Different Carbon Fiber Electrodes in Vanadium Redox Flow Batteries , 2016 .

[156]  Richard S. Nicholson,et al.  Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. , 1965 .

[157]  Matthew M. Mench,et al.  Influence of architecture and material properties on vanadium redox flow battery performance , 2016 .

[158]  Yusheng Yang,et al.  A study of the Fe(III)/Fe(II)-triethanolamine complex redox couple for redox flow battery application , 2006 .

[159]  Maria Skyllas-Kazacos,et al.  Performance Characteristics of Carbon Plastic Electrodes in the All‐Vanadium Redox Cell , 1989 .

[160]  Michael Suriyah,et al.  Passive components limit the cost reduction of conventionally designed vanadium redox flow batteries , 2018 .

[161]  Maria Skyllas-Kazacos,et al.  Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments , 1992 .

[162]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[163]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[164]  Qian Xu,et al.  An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(II)/V(III) and V(IV)/V(V) couples in a vanadium redox flow battery , 2014 .

[165]  Paul Denholm,et al.  The potential for battery energy storage to provide peaking capacity in the United States , 2019, Renewable Energy.

[166]  Fikile R. Brushett,et al.  Cost-driven materials selection criteria for redox flow battery electrolytes , 2016 .

[167]  Farouq S. Mjalli,et al.  Redox Flow Battery for Energy Storage , 2013 .

[168]  M. Morita,et al.  A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte , 1988 .

[169]  Le Liu,et al.  An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries , 2015 .

[170]  K. Hsueh,et al.  A Kinetic Study of the Platinum/Carbon Anode Catalyst for Vanadium Redox Flow Battery , 2013 .

[171]  R. Wightman,et al.  Voltammetry with Microscopic Electrodes in New Domains , 1988, Science.

[172]  C. Dennison,et al.  Identification of performance limiting electrode using asymmetric cell configuration in vanadium redox flow batteries , 2013 .

[173]  Joaquín Rodríguez-López,et al.  Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents. , 2014, Journal of the American Chemical Society.

[174]  Charles W. Monroe,et al.  Degradation mechanisms in the non-aqueous vanadium acetylacetonate redox flow battery , 2012 .

[175]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[176]  T. Shikama,et al.  Acceleration of the redox kinetics of VO2+/VO2+ and V3+/V2+ couples on carbon paper , 2011 .

[177]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[178]  Andreas Poullikkas,et al.  Overview of current and future energy storage technologies for electric power applications , 2009 .

[179]  J. Parrondo,et al.  Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery , 2019, The Journal of Physical Chemistry C.

[180]  Ho Won Ra,et al.  Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc–bromine redox flow battery , 2016 .

[181]  J. Heinze Ultramicroelectrodes in Electrochemistry , 1993 .

[182]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[183]  P. Unwin,et al.  Hydrodynamic ultramicroelectrodes: kinetic and analytical applications , 2001 .

[184]  Maria Skyllas-Kazacos,et al.  Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment , 1992 .

[185]  Lu Yue,et al.  Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery , 2010 .

[186]  D. N. Buckley,et al.  Spectroscopic Measurement of State of Charge in Vanadium Flow Batteries with an Analytical Model of VIV-VV Absorbance , 2016 .

[187]  Ketack Kim,et al.  Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. , 2015, ChemSusChem.

[188]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[189]  Fang Wang,et al.  An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples , 2014 .

[190]  Xuelong Zhou,et al.  The effects of design parameters on the charge-discharge performance of iron-chromium redox flow batteries , 2016 .

[191]  David Linden,et al.  Linden's Handbook of Batteries , 2010 .

[192]  Mike L. Perry,et al.  High Power Density Redox Flow Battery Cells , 2013 .

[193]  Thomas A. Zawodzinski,et al.  Monitoring the State of Charge of Operating Vanadium Redox Flow Batteries , 2012, ECS Transactions.

[194]  R. Wightman,et al.  Diffusion coefficients determined with microelectrodes , 1991 .

[195]  M. Mench,et al.  Architecture for improved mass transport and system performance in redox flow batteries , 2017 .

[196]  A. Bard,et al.  Scanning electrochemical microscopy. Theory of the feedback mode , 1989 .

[197]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[198]  Debasish Mohanty,et al.  The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling , 2016 .

[199]  Uwe Schröder,et al.  On-line controlled state of charge rebalancing in vanadium redox flow battery , 2013 .

[200]  Michael A. Hickner,et al.  Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries , 2013 .

[201]  L. Zeng,et al.  Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries , 2013 .

[202]  B. Goldsmith,et al.  V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries , 2019, ACS Energy Letters.

[203]  E. L. Martin,et al.  Spectrophotometric Investigation of Vanadium(II), Vanadium(III), and Vanadium(IV) in Various Media. , 1962 .

[204]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[205]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[206]  Yasushi Katayama,et al.  Investigations on V(IV)/V(V) and V(II)/V(III) redox reactions by various electrochemical methods , 2005 .