Human retinal circuitry and physiology

Every second, in an average daytime light environment, hundreds of millions of photons enter the human eye and arrive at the photoreceptor layer of the retina. All our information about the visible world is contained in this rain of photons. The retina is a complex tissue, literally an extension of the brain, which transforms the rain of photons into bioelectric signals containing all the information available to the brain to interpret and respond to the external visual world. A considerable amount of processing takes place within the retinal tissue itself. Understanding what kind of processing takes place at each retinal stage is crucial for understanding normal vision, vision in the presence of diseases affecting the retina, and, ultimately, for the development of therapies to treat such diseases. This manuscript reviews the relation between structure and function of the different retinal pathways and addresses their possible roles for visual perception.

[1]  D. Eliott,et al.  RETINA , 1965, Computer Vision, A Reference Guide.

[2]  M. Kamermans,et al.  Retinal parallel pathways: Seeing with our inner fish , 2009, Vision Research.

[3]  U. Grünert,et al.  The midget‐parvocellular pathway of marmoset retina: A quantitative light microscopic study , 2008, The Journal of comparative neurology.

[4]  K. Yau,et al.  How vision begins: An odyssey , 2008, Proceedings of the National Academy of Sciences.

[5]  Stephen A. Baccus,et al.  A Retinal Circuit That Computes Object Motion , 2008, The Journal of Neuroscience.

[6]  Yin Shen,et al.  Regulation of ON bipolar cell activity , 2008, Progress in Retinal and Eye Research.

[7]  L. Silveira,et al.  Twelve chromatically opponent ganglion cell types in turtle retina , 2008, Visual Neuroscience.

[8]  Charles P. Ratliff,et al.  Design of a Neuronal Array , 2008, The Journal of Neuroscience.

[9]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[10]  T. Langmann Microglia activation in retinal degeneration , 2007, Journal of leukocyte biology.

[11]  Stefan Schinkinger,et al.  Müller cells are living optical fibers in the vertebrate retina , 2007, Proceedings of the National Academy of Sciences.

[12]  Primate S Cones Have Blue-Yellow Opponent Receptive Fields , 2007 .

[13]  M. Kamermans,et al.  Interaction between rod and cone inputs in mixed‐input bipolar cells in goldfish retina , 2007, Journal of neuroscience research.

[14]  M. Kamermans,et al.  The contribution of the outer retina to color constancy: A general model for color constancy synthesized from primate and fish data , 2007, Visual Neuroscience.

[15]  Peter Wiedemann,et al.  Müller cells in the healthy and diseased retina , 2006, Progress in Retinal and Eye Research.

[16]  J. Brandstätter,et al.  Ribbon synapses of the retina , 2006, Cell and Tissue Research.

[17]  Botond Roska,et al.  Parallel processing in retinal ganglion cells: how integration of space-time patterns of excitation and inhibition form the spiking output. , 2006, Journal of neurophysiology.

[18]  Wei Li,et al.  Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor Synapse , 2006, Neuron.

[19]  M. Kamermans,et al.  Surround Stimulation Leads to Potentiation of Ganglion Cells Center Responses , 2006 .

[20]  Paul R. Martin,et al.  Random Wiring in the Midget Pathway of Primate Retina , 2006, The Journal of Neuroscience.

[21]  Erika D Eggers,et al.  GABAA, GABAC and glycine receptor‐mediated inhibition differentially affects light‐evoked signalling from mouse retinal rod bipolar cells , 2006, The Journal of physiology.

[22]  E. Solessio,et al.  Shedding Light On Cones , 2006, The Journal of general physiology.

[23]  J. L. Schnapf,et al.  Gap-Junctional Coupling and Absolute Sensitivity of Photoreceptors in Macaque Retina , 2005, The Journal of Neuroscience.

[24]  B. Borghuis,et al.  Encoding Light Intensity by the Cone Photoreceptor Synapse , 2005, Neuron.

[25]  Wallace B. Thoreson,et al.  Synaptic transmission at retinal ribbon synapses , 2005, Progress in Retinal and Eye Research.

[26]  D. Zenisek,et al.  Recent progress towards understanding the synaptic ribbon , 2005, Current Opinion in Neurobiology.

[27]  Richard H. Masland,et al.  The many roles of starburst amacrine cells , 2005, Trends in Neurosciences.

[28]  E. D. Montag,et al.  Spectrally opponent inputs to the human luminance pathway: slow +M and −L cone inputs revealed by intense long‐wavelength adaptation , 2005, The Journal of physiology.

[29]  A. Stockman,et al.  Spectrally opponent inputs to the human luminance pathway: slow +L and −M cone inputs revealed by low to moderate long‐wavelength adaptation , 2005, The Journal of physiology.

[30]  Kwoon Y. Wong,et al.  Retinal bipolar cell input mechanisms in giant danio. III. ON-OFF bipolar cells and their color-opponent mechanisms. , 2005, Journal of neurophysiology.

[31]  William H Baldridge,et al.  Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse , 2005, The Journal of Neuroscience.

[32]  Peter Sterling,et al.  Structure and function of ribbon synapses , 2005, Trends in Neurosciences.

[33]  K. Gegenfurtner,et al.  The senses , 1998, The Journal of physiology.

[34]  C. Joselevitch The twilight zone : how mixed-input bipolar cells process rod and cone signals , 2005 .

[35]  B. Völgyi,et al.  Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina , 2004, The Journal of Neuroscience.

[36]  Seunghoon Lee,et al.  A Developmental Switch in the Excitability and Function of the Starburst Network in the Mammalian Retina , 2004, Neuron.

[37]  Ji-Jie Pang,et al.  Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina , 2004, Vision Research.

[38]  W. Rowland Taylor,et al.  Transmission of scotopic signals from the rod to rod-bipolar cell in the mammalian retina , 2004, Vision Research.

[39]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[40]  S. Thanos,et al.  Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. , 2004, Current drug targets.

[41]  P. Sterling,et al.  Efficiency of Information Transmission by Retinal Ganglion Cells , 2004, Current Biology.

[42]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[43]  Robert G. Smith,et al.  Spike Generator Limits Efficiency of Information Transfer in a Retinal Ganglion Cell , 2004, The Journal of Neuroscience.

[44]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[45]  T. Lamb,et al.  Visual transduction by rod and cone photoreceptors , 2004 .

[46]  A. Hughes Cat retina and the sampling theorem; the relation of transient and sustained brisk-unit cut-off frequency to α and β-mode cell density , 2004, Experimental Brain Research.

[47]  Akimichi Kaneko,et al.  pH Changes in the Invaginating Synaptic Cleft Mediate Feedback from Horizontal Cells to Cone Photoreceptors by Modulating Ca2+ Channels , 2003, The Journal of general physiology.

[48]  E. Newman New roles for astrocytes: Regulation of synaptic transmission , 2003, Trends in Neurosciences.

[49]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[50]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[51]  Marisa Carrasco,et al.  Speed of visual processing increases with eccentricity , 2003, Nature Neuroscience.

[52]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[53]  Stephen A. Baccus,et al.  Segregation of object and background motion in the retina , 2003, Nature.

[54]  M. Kamermans,et al.  Effects of Fast Extracellular Proton Buffering on Feedback Responses in HCs of the Goldfish , 2003 .

[55]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[56]  H. Kolb How the Retina Works , 2003, American Scientist.

[57]  Kareem M. Ahmad,et al.  Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat , 2003, The Journal of comparative neurology.

[58]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[59]  T. Sejnowski,et al.  Color opponency is an efficient representation of spectral properties in natural scenes , 2002, Vision Research.

[60]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[61]  P. Sterling,et al.  Microcircuits for Night Vision in Mouse Retina , 2001, The Journal of Neuroscience.

[62]  U. Grünert,et al.  Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus , 2001, The Journal of comparative neurology.

[63]  S. Laughlin Energy as a constraint on the coding and processing of sensory information , 2001, Current Opinion in Neurobiology.

[64]  S. Massey,et al.  Rod pathways in the mammalian retina use connexin 36 , 2001, The Journal of comparative neurology.

[65]  M Kamermans,et al.  Hemichannel-Mediated Inhibition in the Outer Retina , 2001, Science.

[66]  S. Bloomfield,et al.  Rod Vision: Pathways and Processing in the Mammalian Retina , 2001, Progress in Retinal and Eye Research.

[67]  Evelyne Sernagor,et al.  Development of Retinal Ganglion Cell Structure and Function , 2001, Progress in Retinal and Eye Research.

[68]  Y. Koutalos,et al.  Vertebrate Photoreceptors , 2001, Progress in Retinal and Eye Research.

[69]  S. DeVries,et al.  Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate Channels , 2000, Neuron.

[70]  R. Marc,et al.  Fundamental GABAergic amacrine cell circuitries in the retina: Nested feedback, concatenated inhibition, and axosomatic synapses , 2000, The Journal of comparative neurology.

[71]  H Spekreijse,et al.  The open- and closed-loop gain-characteristics of the cone/horizontal cell synapse in goldfish retina. , 2000, Journal of neurophysiology.

[72]  T. Lamb,et al.  The Gain of Rod Phototransduction Reconciliation of Biochemical and Electrophysiological Measurements , 2000, Neuron.

[73]  P Sterling,et al.  Localization of mGluR6 to dendrites of ON bipolar cells in primate retina , 2000, The Journal of comparative neurology.

[74]  J. Toyoda,et al.  Color-opponent responses of small and giant bipolar cells in the carp retina. , 2000, Visual neuroscience.

[75]  Fan Gao,et al.  Functional Architecture of Synapses in the Inner Retina: Segregation of Visual Signals by Stratification of Bipolar Cell Axon Terminals , 2000, The Journal of Neuroscience.

[76]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[77]  R. Nelson,et al.  Axonal stratification patterns and glutamate‐gated conductance mechanisms in zebrafish retinal bipolar cells , 2000, The Journal of physiology.

[78]  R H Masland,et al.  Light-evoked responses of bipolar cells in a mammalian retina. , 2000, Journal of neurophysiology.

[79]  D. Copenhagen,et al.  Inhibition is not required for the production of transient spiking responses from retinal ganglion cells. , 2000, Visual neuroscience.

[80]  Edward N. Pugh,et al.  Chapter 5 Phototransduction in vertebrate rods and cones: Molecular mechanisms of amplification, recovery and light adaptation , 2000 .

[81]  Sophie M. Wuerger,et al.  'Color Vision: From Genes to Perception' , 2000 .

[82]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[83]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[84]  L. Peichl,et al.  An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Dacey Primate retina: cell types, circuits and color opponency , 1999, Progress in Retinal and Eye Research.

[86]  M. Kalloniatis,et al.  Amino acid neurochemistry of the vertebrate retina , 1999, Progress in Retinal and Eye Research.

[87]  Lindsay T. Sharpe,et al.  Rod pathways: the importance of seeing nothing , 1999, Trends in Neurosciences.

[88]  B. Boycott,et al.  Parallel processing in the mammalian retina: the Proctor Lecture. , 1999, Investigative ophthalmology & visual science.

[89]  E. A. Schwartz,et al.  Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina , 1999, Nature.

[90]  Karl R. Gegenfurtner,et al.  Color Vision: From Genes to Perception , 1999 .

[91]  Terrence J. Sejnowski,et al.  Neuronal Tuning: To Sharpen or Broaden? , 1999, Neural Computation.

[92]  M. Tsacopoulos,et al.  Trafficking of molecules and metabolic signals in the retina , 1998, Progress in Retinal and Eye Research.

[93]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[94]  H Spekreijse,et al.  Spectral sensitivity of the feedback signal from horizontal cells to cones in goldfish retina , 1998, Visual Neuroscience.

[95]  H Spekreijse,et al.  The cone/horizontal cell network: A possible site for color constancy , 1998, Visual Neuroscience.

[96]  F. Werblin,et al.  Response to Change Is Facilitated by a Three-Neuron Disinhibitory Pathway in the Tiger Salamander Retina , 1998, The Journal of Neuroscience.

[97]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[98]  Helmut Schwegler,et al.  Coarse coding: applications to the visual system of salamanders , 1997, Biological Cybernetics.

[99]  N. Vardi,et al.  ON cone bipolar cells in rat express the metabotropic receptor mGluR6 , 1997, Visual Neuroscience.

[100]  Helmut Schwegler,et al.  Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons , 1997, Biological Cybernetics.

[101]  P. Witkovsky,et al.  Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel , 1997, Neuroscience.

[102]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[103]  Paul R. Martin,et al.  The Synaptic Complex of Cones in the Fovea and in the Periphery of the Macaque Monkey Retina , 1996, Vision Research.

[104]  C. Distler,et al.  Glia Cells of the Monkey Retina—II. Müller Cells , 1996, Vision Research.

[105]  E. Newman,et al.  The Müller cell: a functional element of the retina , 1996, Trends in Neurosciences.

[106]  J. Salazar,et al.  Immunohistochemical Study of Human Optic Nerve Head Astroglia , 1996, Vision Research.

[107]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[108]  Henk Spekreijse,et al.  Spectral behavior of cone-driven horizontal cells in Teleost Retina , 1995, Progress in Retinal and Eye Research.

[109]  D. Baylor,et al.  An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[110]  D. Schweitzer,et al.  Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. , 1995, Physics in medicine and biology.

[111]  J. L. Schnapf,et al.  Photovoltage of rods and cones in the macaque retina. , 1995, Science.

[112]  G. Buchsbaum,et al.  Mammalian rod terminal: Architecture of a binary synapse , 1995, Neuron.

[113]  Retinal Synapses: Glutamate receptors for signal amplification , 1994, Current Biology.

[114]  J. Salazar,et al.  Immunohistochemical study of human retinal astroglia , 1994, Vision Research.

[115]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in primate retina: A Golgi‐light microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[116]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in human retina: A Golgi‐electron microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[117]  H. Kolb,et al.  Are there three types of horizontal cell in the human retina? , 1994, The Journal of comparative neurology.

[118]  D. A. Burkhardt,et al.  Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[119]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[120]  H Nawa,et al.  Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. , 1993, The Journal of biological chemistry.

[121]  J. Pokorny,et al.  How surrounds affect chromaticity discrimination. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[122]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[123]  A. Ames,et al.  Energy requirements of glutamatergic pathways in rabbit retina , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  J. Salazar,et al.  Retinal perivascular astroglia: an immunoperoxidase study , 1992, Vision Research.

[125]  S. Wu,et al.  Feedback connections and operation of the outer plexiform layer of the retina , 1992, Current Opinion in Neurobiology.

[126]  H. Kolb,et al.  Neurons of the human retina: A Golgi study , 1992, The Journal of comparative neurology.

[127]  D. O'Malley,et al.  Co-release of acetylcholine and GABA by the starburst amacrine cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[129]  B. Boycott,et al.  Functional architecture of the mammalian retina. , 1991, Physiological reviews.

[130]  Vision: Is there more than meets the eye? , 1991 .

[131]  W. Merigan,et al.  Spatial resolution across the macaque retina , 1990, Vision Research.

[132]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[133]  Z. Dreher,et al.  Müller cells in adult rabbit retinae: Morphology, distribution and implications for function and development , 1990, The Journal of comparative neurology.

[134]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[135]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[136]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[137]  J. Schnitzer Enzyme‐histochemical demonstration of microglial cells in the adult and postnatal rabbit retina , 1989, The Journal of comparative neurology.

[138]  A. Mariani Synaptic organization of classical neurotransmitter phenotypes in the primate retina. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[139]  D. Jameson,et al.  Essay concerning color constancy. , 1989, Annual review of psychology.

[140]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[141]  S. Yazulla,et al.  Light adaptation of rod and cone luminosity horizontal cells of the retina of the goldfish , 1988, Brain Research.

[142]  G. Falk Signal transmission from rods to bipolar and horizontal cells: A synthesis , 1988 .

[143]  S. Yazulla,et al.  GABAergic input to the synaptic terminals of mb1 bipolar cells in the goldfish retina , 1987, Brain Research.

[144]  A. Kaneko,et al.  gamma-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[145]  D. Baylor,et al.  Photoreceptor signals and vision. Proctor lecture. , 1987, Investigative ophthalmology & visual science.

[146]  A. Kaneko,et al.  GABA mediates the negative feedback from amacrine to bipolar cells. , 1987, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[147]  D. Copenhagen,et al.  Multiple classes of glutamate receptor on depolarizing bipolar cells in retina , 1987, Nature.

[148]  S. Yazulla,et al.  Separation and light adaptation of rod and cone signals in the retina of the goldfish , 1986, Vision Research.

[149]  R. Shapley,et al.  Cat and monkey retinal ganglion cells and their visual functional roles , 1986, Trends in Neurosciences.

[150]  J. Ringo,et al.  Spectral coding in cat retinal ganglion cell receptive fields. , 1986, Journal of neurophysiology.

[151]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[152]  S. Yazulla Chapter 1 GABAergic mechanisms in the retina , 1986 .

[153]  P Sterling,et al.  Microcircuitry of bipolar cells in cat retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[154]  N. Daw The psychology and physiology of colour vision , 1984, Trends in Neurosciences.

[155]  A. Mariani Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive , 1984, Nature.

[156]  B. Boycott,et al.  A spatial analysis of on- and off-ganglion cells in the cat retina , 1983, Vision Research.

[157]  H. Saito Pharmacological and morphological differences between X- and Y-type ganglion cells in the cat's retina , 1983, Vision Research.

[158]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[159]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[160]  A. Mariani Giant bistratified bipolar cells in monkey retina , 1983 .

[161]  F. Werblin,et al.  Lateral interactions in absence of feedback to cones. , 1983, Journal of neurophysiology.

[162]  A. Kaneko,et al.  Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. II. Studies on responses evoked by transretinal current stimulation , 1983, The Journal of general physiology.

[163]  A. Kaneko,et al.  Ionic mechanisms underlying the responses of off-center bipolar cells in the carp retina. I. Studies on responses evoked by light , 1983, The Journal of general physiology.

[164]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[165]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[166]  J. Mollon Color vision. , 1982, Annual review of psychology.

[167]  E. Zrenner,et al.  Color coding in primate retina , 1981, Vision Research.

[168]  S. Naghshineh,et al.  Action of glutamate and aspartate analogues on rod horizontal and bipolar cells , 1981, Nature.

[169]  J. Toyoda,et al.  Ionic mechanisms of two types of on-center bipolar cells in the carp retina. II. The responses to annular illumination , 1981, The Journal of general physiology.

[170]  H B Barlow,et al.  The Ferrier lecture, 1980 , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[171]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[172]  H. Barlow Critical limiting factors in the design of the eye and visual cortex , 1981 .

[173]  Leo Maurice Hurvich,et al.  Color vision , 1981 .

[174]  A. Hughes Cat retina and the sampling theorem; the relation of transient and sustained brisk-unit cut-off frequency to alpha and beta-mode cell density. , 1981, Experimental brain research.

[175]  F. M. de Monasterio,et al.  Signals from blue cones in “red-green” opponent-colour ganglion cells of the macaque retina , 1979, Vision Research.

[176]  J. Eccles,et al.  Ionotropic and metabotropic neurotransmission , 1979, Trends in Neurosciences.

[177]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[178]  T. G. Wheeler Retinal ON and OFF responses convey different chromatic information to the CNS , 1979, Brain Research.

[179]  J. Toyoda,et al.  Ionic mechanisms of two types of on-center bipolar cells in the carp retina. II. The responses to annular illumination , 1981, The Journal of general physiology.

[180]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[181]  R. West Bipolar and horizontal cells of the gray squirrel retina: Golgi morphology and receptor connections , 1978, Vision Research.

[182]  W. Stell,et al.  GABA‐ergic pathways in the goldfish retina , 1978, The Journal of comparative neurology.

[183]  M. Levine,et al.  Variability in ganglion cell firing patterns; implications for separate “on” and “off” processes , 1977, Vision Research.

[184]  A Kaneko,et al.  Neuronal architecture of on and off pathways to ganglion cells in carp retina. , 1977, Science.

[185]  E. V. Famiglietti,et al.  Structural basis for ON-and OFF-center responses in retinal ganglion cells. , 1976, Science.

[186]  A. Kaneko,et al.  Synaptic transmission from photoreceptors to bipolar and horizontal cells in the carp retina. , 1976, Cold Spring Harbor symposia on quantitative biology.

[187]  W. Stell,et al.  Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses , 1975, Science.

[188]  D. Tolhurst,et al.  Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[189]  D. Tolhurst,et al.  Concealed colour opponency in ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[190]  J. Scholes Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[191]  M. Fuortes,et al.  Interactions leading to horizontal cell responses in the turtle retina , 1974, The Journal of physiology.

[192]  A Kaneko,et al.  Receptive field organization of bipolar and amacrine cells in the goldfish retina , 1973, The Journal of physiology.

[193]  N. Daw Neurophysiology of color vision. , 1973, Physiological reviews.

[194]  P. Marchiafava,et al.  The spatial dependent characteristics of the fish S-potentials evoked by brief flashes. , 1973, Vision research.

[195]  J. Scholes,et al.  Receptor—Bipolar Connectivity Patterns in Fish Retina , 1973, Nature.

[196]  Teruya Ohtsuka,et al.  Effects of chemicals on receptors and horizontal cells in the retina , 1972, The Journal of physiology.

[197]  E. MacNichol,et al.  Inactivation of Horizontal Cells in Turtle Retina by Glutamate and Aspartate , 1972, Science.

[198]  W L Pak,et al.  Adaptation in Retinal Rods of Axolotl: Intracellular Recordings , 1972, Science.

[199]  P. Gouras Color opponency from fovea to striate cortex. , 1972, Investigative ophthalmology.

[200]  N. Daw Color-coded cells in goldfish, cat, and rhesus monkey. , 1972, Investigative ophthalmology.

[201]  K. Naka The horizontal cells. , 1972, Vision research.

[202]  H Ripps,et al.  S-Potentials in the Skate Retina , 1971, The Journal of general physiology.

[203]  H. Kolb,et al.  Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[204]  D. Baylor,et al.  Electrical responses of single cones in the retina of the turtle , 1970, The Journal of physiology.

[205]  J. Dowling,et al.  Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. , 1969, Journal of neurophysiology.

[206]  A. Kaneko,et al.  Electrophysiological study of single neurons in the inner nuclear layer of the carp retina. , 1969, Vision research.

[207]  N. Daw Colour‐coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli , 1968, The Journal of physiology.

[208]  N. Daw,et al.  Goldfish Retina: Organization for Simultaneous Color Contrast , 1967, Science.

[209]  B. Boycott,et al.  Organization of the primate retina: electron microscopy , 1966, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[210]  K. Naka,et al.  An attempt to analyse colour reception by electrophysiology , 1966, The Journal of physiology.

[211]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[212]  H. Barlow,et al.  Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit , 1964, The Journal of physiology.

[213]  E. MacNichol,et al.  RETINAL MECHANISMS FOR CHROMATIC AND ACHROMATIC VISION , 1958, Annals of the New York Academy of Sciences.

[214]  F. Sjöstrand Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. , 1958, Journal of ultrastructure research.

[215]  G. Svaetichin,et al.  Electric responses from the isolated retinas of fishes. , 1958, American journal of ophthalmology.

[216]  G WALD,et al.  Human Rhodopsin , 1958, Science.

[217]  F. S. Sjostrand Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. , 1958, Journal of ultrastructure research.

[218]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[219]  H. Barlow Eye movements during fixation , 1952, The Journal of physiology.