The mass of simple and higher-order networks

We propose a theoretical framework that explains how the mass of simple and higher-order networks emerges from their topology and geometry. We use the discrete topological Dirac operator to define an action for a massless self-interacting topological Dirac field inspired by the Nambu-Jona Lasinio model. The mass of the network is strictly speaking the mass of this topological Dirac field defined on the network; it results from the chiral symmetry breaking of the model and satisfies a self-consistent gap equation. Interestingly, it is shown that the mass of a network depends on its spectral properties, topology, and geometry. Due to the breaking of the matter-antimatter symmetry observed for the harmonic modes of the discrete topological Dirac operator, two possible definitions of the network mass can be given. For both possible definitions, the mass of the network comes from a gap equation with the difference among the two definitions encoded in the value of the bare mass. Indeed, the bare mass can be determined either by the Betti number $\beta_0$ or by the Betti number $\beta_1$ of the network. We provide numerical results on the mass of different networks, including random graphs, scale-free, and real weighted collaboration networks. We also discuss the generalization of these results to higher-order networks, defining the mass of simplicial complexes. The observed dependence of the mass of the considered topological Dirac field with the topology and geometry of the network could lead to interesting physics in the scenario in which the considered Dirac field is coupled with a dynamical evolution of the underlying network structure.

[1]  R. Lambiotte,et al.  Structural Balance and Random Walks on Complex Networks with Complex Weights , 2023, ArXiv.

[2]  S. Majid Dirac operator associated to a quantum metric , 2023, 2302.05891.

[3]  G. Bianconi,et al.  Persistent Dirac for molecular representation , 2023, Scientific reports.

[4]  Michael T. Schaub,et al.  Dirac signal processing of higher-order topological signals , 2023, New Journal of Physics.

[5]  M. Porter,et al.  Complex networks with complex weights , 2022, Physical review. E.

[6]  G. Bianconi Dirac gauge theory for topological spinors in 3+1 dimensional networks , 2022, Journal of Physics A: Mathematical and Theoretical.

[7]  G. Bianconi,et al.  Local Dirac Synchronization on networks. , 2022, Chaos.

[8]  I. Kleftogiannis,et al.  Emergent spacetime from purely random structures , 2022, 2210.00963.

[9]  G. Bianconi,et al.  Diffusion-driven instability of topological signals coupled by the Dirac operator. , 2022, Physical review. E.

[10]  G. Bianconi,et al.  Weighted simplicial complexes and their representation power of higher-order network data and topology , 2022, Physical review. E.

[11]  Enrico Amico,et al.  The physics of higher-order interactions in complex systems , 2021, Nature Physics.

[12]  A. Eichhorn,et al.  A sprinkling of hybrid-signature discrete spacetimes in real-world networks , 2021, 2107.07325.

[13]  J. J. Torres,et al.  Dirac synchronization is rhythmic and explosive , 2021, Communications Physics.

[14]  I. Kleftogiannis,et al.  Physics in nonfixed spatial dimensions via random networks. , 2021, Physical review. E.

[15]  Ginestra Bianconi,et al.  The topological Dirac equation of networks and simplicial complexes , 2021, ArXiv.

[16]  Marwa Ennaceur,et al.  The magnetic discrete Laplacian inferred from the Gauß–Bonnet operator and application , 2021, Annals of Functional Analysis.

[17]  Thiparat Chotibut,et al.  The birth of geometry in exponential random graphs , 2021, Journal of Physics A: Mathematical and Theoretical.

[18]  G. Bianconi,et al.  Probing the spectral dimension of quantum network geometries , 2020, Journal of Physics: Complexity.

[19]  G. Bianconi,et al.  The higher-order spectrum of simplicial complexes: a renormalization group approach , 2020, Journal of Physics A: Mathematical and Theoretical.

[20]  M. Thies Phase structure of the ( 1+1 )-dimensional Nambu–Jona-Lasinio model with isospin , 2019, Physical Review D.

[21]  F. Verstraete,et al.  Simulating lattice gauge theories within quantum technologies , 2019, The European Physical Journal D.

[22]  K. Klimenko,et al.  Charged pion condensation and duality in dense and hot chirally and isospin asymmetric quark matter in the framework of the NJL2 model , 2019, Physical Review D.

[23]  U. Feige,et al.  Spectral graph theory , 2019, Zeta and 𝐿-functions in Number Theory and Combinatorics.

[24]  M. Dalmonte,et al.  Lattice Gauge Theories and String Dynamics in Rydberg Atom Quantum Simulators , 2019, Physical Review X.

[25]  Luca Lionni,et al.  Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity , 2017, 1710.03663.

[26]  N. Goldman,et al.  Quantum simulation / Simulation quantique Artificial gauge fields in materials and engineered systems , 2017 .

[27]  Nicolas Treps,et al.  Reconfigurable optical implementation of quantum complex networks , 2017, 1708.08726.

[28]  A. Saxena,et al.  Solitary waves in the Nonlinear Dirac Equation , 2017, 1707.01946.

[29]  V. Zhukovsky,et al.  Inhomogeneous charged pion condensation in chiral asymmetric dense quark matter in the framework of a (1+1) NJL$_2$ model , 2017, 1704.01477.

[30]  Manlio De Domenico,et al.  Complex networks from classical to quantum , 2017, Communications Physics.

[31]  C. Trugenberger Combinatorial quantum gravity: geometry from random bits , 2016, 1610.05934.

[32]  D. Parra Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals , 2016, 1609.02260.

[33]  Manlio De Domenico,et al.  Spectral entropies as information-theoretic tools for complex network comparison , 2016, 1609.01214.

[34]  Ginestra Bianconi,et al.  Emergent Hyperbolic Network Geometry , 2016, Scientific Reports.

[35]  S. Montangero,et al.  Lattice gauge theory simulations in the quantum information era , 2016, 1602.03776.

[36]  Ginestra Bianconi,et al.  Network geometry with flavor: From complexity to quantum geometry. , 2015, Physical review. E.

[37]  Jyrki Piilo,et al.  Complex quantum networks as structured environments: engineering and probing , 2015, Scientific Reports.

[38]  C. Trugenberger Quantum gravity as an information network self-organization of a 4D universe , 2015, 1501.01408.

[39]  C. Rovelli,et al.  Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory , 2014 .

[40]  Ginestra Bianconi,et al.  Emergent Complex Network Geometry , 2014, Scientific Reports.

[41]  A. Saxena,et al.  Solitary waves in a discrete nonlinear Dirac equation , 2014, 1408.4171.

[42]  S. Carignano,et al.  Inhomogeneous chiral condensates , 2014, 1406.1367.

[43]  R. Percacci,et al.  Matter matters in asymptotically safe quantum gravity , 2013, 1311.2898.

[44]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[45]  Nabila Torki-Hamza,et al.  The Gauss-Bonnet operator of an infinite graph , 2013, 1301.0739.

[46]  S. Plotkin,et al.  Statistical mechanics of graph models and their implications for emergent spacetime manifolds , 2012, 1210.3372.

[47]  A. Nicholson,et al.  Sign problems, noise, and chiral symmetry breaking in a QCD-like theory , 2012, 1208.5760.

[48]  G. Calcagni,et al.  Laplacians on discrete and quantum geometries , 2012, 1208.0354.

[49]  Michael Hinz,et al.  Dirac and magnetic Schrödinger operators on fractals , 2012, 1207.3077.

[50]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[51]  G. Bianconi,et al.  Shannon and von Neumann entropy of random networks with heterogeneous expected degree. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Dario Benedetti,et al.  Fractal properties of quantum spacetime. , 2008, Physical review letters.

[53]  Laurence Jacobs,et al.  Lattice gauge theories: an introduction , 2008 .

[54]  Christoph Rahmede,et al.  Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation , 2008, 0805.2909.

[55]  Simone Severini,et al.  Quantum graphity: A model of emergent locality , 2008, 0801.0861.

[56]  O. Post First Order Approach and Index Theorems for Discrete and Metric Graphs , 2007, 0708.3707.

[57]  J. Hellerstein,et al.  Higher‐Order Systems , 2004 .

[58]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[59]  J. Harrison,et al.  LETTER TO THE EDITOR: The spin contribution to the form factor of quantum graphs , 2003, nlin/0304046.

[60]  J. Harrison,et al.  Spectral statistics for the Dirac operator on graphs , 2002, nlin/0210029.

[61]  M. Requardt Dirac Operators and the Calculation of the Connes Metric on arbitrary (Infinite) Graphs , 2001, math-ph/0108007.

[62]  R. Frezzotti,et al.  Lattice QCD with a chirally twisted mass term , 2000, hep-lat/0101001.

[63]  A. Barabasi,et al.  Bose-Einstein condensation in complex networks. , 2000, Physical review letters.

[64]  M. Atiyah,et al.  Paul Dirac: The Man and his Work , 1998 .

[65]  T. Krajewski Classification of finite spectral triples , 1997, hep-th/9701081.

[66]  A. Sitarz,et al.  Discrete spectral triples and their symmetries , 1996, q-alg/9612029.

[67]  T. Hatsuda,et al.  QCD phenomenology based on a chiral effective Lagrangian , 1994, hep-ph/9401310.

[68]  E. Davies Analysis on graphs and noncommutative geometry , 1993 .

[69]  S. Klevansky The Nambu-Jona-Lasinio model of quantum chromodynamics , 1992 .

[70]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[71]  P. Dirac The quantum theory of the electron , 1928 .

[72]  J. R. Schrieffer,et al.  Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity , 2011 .

[73]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[74]  S. Blundell,et al.  The Dirac Equation , 2014 .

[75]  A. Barabasi,et al.  Emergence of Scaling in Random Networks , 1999 .

[76]  Michel Le Bellac,et al.  Quantum and statistical field theory , 1991 .

[77]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[78]  E. Witten Supersymmetry and Morse theory , 1982 .

[79]  A. Andrew,et al.  Emergence of Scaling in Random Networks , 2022 .