Some generalizations of fuzzy structures in quantum computational logic
暂无分享,去创建一个
Francesco Paoli | Roberto Giuntini | Giuseppe Sergioli | Antonio Ledda | R. Giuntini | G. Sergioli | F. Paoli | Antonio Ledda
[1] B. D'espagnat. Conceptual Foundations Of Quantum Mechanics , 1971 .
[2] Petr Hájek,et al. A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..
[3] Francesco Paoli,et al. MV-Algebras and Quantum Computation , 2006, Stud Logica.
[4] K. Zetie,et al. How does a Mach-Zehnder interferometer work? , 2000 .
[5] C. cohen-tannoudji,et al. Quantum Mechanics: , 2020, Fundamentals of Physics II.
[6] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[7] M. L. Dalla Chiara,et al. Quantum Computational Logics. A Survey , 2003 .
[8] J. Neumann,et al. The Logic of Quantum Mechanics , 1936 .
[9] D. Walton. Slippery Slope Arguments , 1992 .
[10] Roberto Giuntini,et al. Reversibility and Irreversibility in Quantum Computation and in Quantum Computational Logics , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.
[11] Roberto Giuntini,et al. Reasoning in quantum theory , 2004 .
[12] Myriam Quatrini. A denotational semantics ofLC2 , 1996, Arch. Math. Log..
[13] Robert W. Spekkens,et al. Foundations of Quantum Mechanics , 2007 .
[14] Gianpiero Cattaneo,et al. Quantum computational structures , 2004 .
[15] Franco Montagna,et al. An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..
[16] Francesco Paoli,et al. On some properties of quasi-MV algebras and $sqrt{prime}$-MV algebras , 2009 .
[17] Roberto Giuntini,et al. Logics from Quantum Computation , 2005 .
[18] Francesco Paoli,et al. Expanding Quasi-MV Algebras by a Quantum Operator , 2007, Stud Logica.
[19] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[20] M. L. Dalla Chiara,et al. An Unsharp Logic from Quantum Computation , 2002, quant-ph/0201013.
[21] Noam Nisan,et al. Quantum circuits with mixed states , 1998, STOC '98.
[22] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[23] J. A. Goguen,et al. The logic of inexact concepts , 1969, Synthese.
[24] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[25] Félix Bou,et al. On some properties of quasi-MV algebras and $$\sqrt{^{\prime}}$$ quasi-MV algebras. Part II , 2008, Soft Comput..
[26] Francesco Paoli,et al. On some properties of quasi-MV algebras and √' quasi-MV algebras. Part IV , 2013, Reports Math. Log..
[27] N. Bohr. II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .
[28] J. Linnett,et al. Quantum mechanics , 1975, Nature.
[29] Francesco Paoli,et al. On some properties of quasi MV algebras and square root quasi MV algebras. Part III , 2010, Reports Math. Log..
[30] I. Chuang,et al. Quantum Computation and Quantum Information: Bibliography , 2010 .
[31] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[32] Gianpiero Cattaneo,et al. Brouwer-Zadeh posets and three-valued Ł ukasiewicz posets , 1989 .
[33] K. Fine. Vagueness, truth and logic , 1975, Synthese.
[34] H. Dishkant,et al. Logic of Quantum Mechanics , 1976 .
[35] Roberto Giuntini. Quantum MV algebras , 1996, Stud Logica.