Some generalizations of fuzzy structures in quantum computational logic

Quantum computational logics provide a fertile common ground for a unified treatment of vagueness and uncertainty. In this paper, we describe an approach to the logic of quantum computation that has been recently taken up and developed. After reporting on the state of the art, we explore some future research perspectives in the light of some recent limitative results whose general significance will be duly assessed.

[1]  B. D'espagnat Conceptual Foundations Of Quantum Mechanics , 1971 .

[2]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[3]  Francesco Paoli,et al.  MV-Algebras and Quantum Computation , 2006, Stud Logica.

[4]  K. Zetie,et al.  How does a Mach-Zehnder interferometer work? , 2000 .

[5]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[6]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[7]  M. L. Dalla Chiara,et al.  Quantum Computational Logics. A Survey , 2003 .

[8]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[9]  D. Walton Slippery Slope Arguments , 1992 .

[10]  Roberto Giuntini,et al.  Reversibility and Irreversibility in Quantum Computation and in Quantum Computational Logics , 2006, Algebraic and Proof-theoretic Aspects of Non-classical Logics.

[11]  Roberto Giuntini,et al.  Reasoning in quantum theory , 2004 .

[12]  Myriam Quatrini A denotational semantics ofLC2 , 1996, Arch. Math. Log..

[13]  Robert W. Spekkens,et al.  Foundations of Quantum Mechanics , 2007 .

[14]  Gianpiero Cattaneo,et al.  Quantum computational structures , 2004 .

[15]  Franco Montagna,et al.  An Algebraic Approach to Propositional Fuzzy Logic , 2000, J. Log. Lang. Inf..

[16]  Francesco Paoli,et al.  On some properties of quasi-MV algebras and $sqrt{prime}$-MV algebras , 2009 .

[17]  Roberto Giuntini,et al.  Logics from Quantum Computation , 2005 .

[18]  Francesco Paoli,et al.  Expanding Quasi-MV Algebras by a Quantum Operator , 2007, Stud Logica.

[19]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[20]  M. L. Dalla Chiara,et al.  An Unsharp Logic from Quantum Computation , 2002, quant-ph/0201013.

[21]  Noam Nisan,et al.  Quantum circuits with mixed states , 1998, STOC '98.

[22]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[24]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[25]  Félix Bou,et al.  On some properties of quasi-MV algebras and $$\sqrt{^{\prime}}$$ quasi-MV algebras. Part II , 2008, Soft Comput..

[26]  Francesco Paoli,et al.  On some properties of quasi-MV algebras and √' quasi-MV algebras. Part IV , 2013, Reports Math. Log..

[27]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[28]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[29]  Francesco Paoli,et al.  On some properties of quasi MV algebras and square root quasi MV algebras. Part III , 2010, Reports Math. Log..

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[31]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[32]  Gianpiero Cattaneo,et al.  Brouwer-Zadeh posets and three-valued Ł ukasiewicz posets , 1989 .

[33]  K. Fine Vagueness, truth and logic , 1975, Synthese.

[34]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[35]  Roberto Giuntini Quantum MV algebras , 1996, Stud Logica.