A total variation diminishing shock viscosity
暂无分享,去创建一个
[1] A. Harten. ENO schemes with subcell resolution , 1989 .
[2] William D. Schulz. Tensor Artificial Viscosity for Numerical Hydrodynamics , 1964 .
[3] Phillip Colella,et al. Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .
[4] C. Hirsch. Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .
[5] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[6] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[7] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[8] Donald E. Burton,et al. Physics and numerics of the tensor code (incomplete preliminary documentation) , 1982 .
[9] R. D. Richtmyer,et al. A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .
[10] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[11] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .
[12] D. Benson. Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .
[13] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[14] J. O. Hallquist,et al. User's manual for DYNA2D: an explicit two-dimensional hydrodynamic finite-element code with interactive rezoning , 1982 .
[15] B. Kashiwa,et al. Comparisons between the cell-centered and staggered mesh Lagrangian hydrodynamics , 1991 .
[16] John K. Dukowicz,et al. A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .