Rapid yield estimation as a computer aid for analog circuit design

A rapid yield estimation methodology that aids the analog circuit designer in making design tradeoffs that improve yield is presented. This methodology is based on using hierarchical evaluation of analysis equations, rather than simulations, to predict circuit performance. The new analog rapid yield estimation (ARYE) method has been used to predict the yield of two-stage operational amplifiers and has been incorporated into the Carnegie Mellon University (CMU) analog design system (ACACIA). An example of how ARYE allows analog designers to quickly explore the impact of design changes on yield is presented. The primary goal of ARYE is to make numerous early predictions of parametric yield economical for the analog circuit designer. >

[1]  Wojciech Maly,et al.  Computer-aided design for VLSI circuit manufacturability , 1990, Proc. IEEE.

[2]  Rob A. Rutenbar,et al.  ACACIA: the CMU analog design system , 1989, 1989 Proceedings of the IEEE Custom Integrated Circuits Conference.

[3]  Sani R. Nassif,et al.  FABRICS II: A Statistically Based IC Fabrication Process Simulator , 1984, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[4]  L. Richard Carley Automated Design of Operational Amplifiers: A Case Study , 1990 .

[5]  W. Maly Dimension reduction procedure for the simplicial approximation approach to design centering , 1980 .

[6]  A. Basilevsky,et al.  Factor Analysis as a Statistical Method. , 1964 .

[7]  Rob A. Rutenbar,et al.  A Prototype Framework for Knowledge-Based Analog Circuit Synthesis , 1987, DAC 1987.

[8]  Georges Gielen,et al.  ISAAC: a symbolic simulator for analog integrated circuits , 1989, IEEE J. Solid State Circuits.

[9]  Marcel J. M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .

[10]  Andrzej J. Strojwas,et al.  Statistical Simulation of the IC Manufacturing Process , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Gabor C. Temes,et al.  Random error effects in matched MOS capacitors and current sources , 1984 .

[12]  R.W. Dutton,et al.  Correlation of fabrication process and electrical device parameter variations , 1977, 1976 International Electron Devices Meeting.

[13]  Costas J. Spanos,et al.  Parameter Extraction for Statistical IC Process Characterization , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[14]  K. R. Lakshmikumar,et al.  Characterisation and modeling of mismatch in MOS transistors for precision analog design , 1986 .

[15]  Bing J. Sheu,et al.  BSIM: Berkeley short-channel IGFET model for MOS transistors , 1987 .

[16]  G. Temes,et al.  Random errors in MOS capacitors , 1982 .

[17]  Eric A. Vittoz,et al.  IDAC: an interactive design tool for analog CMOS circuits , 1987 .

[18]  Rob A. Rutenbar,et al.  OASYS: a framework for analog circuit synthesis , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[19]  Rob A. Rutenbar,et al.  A Prototype Framework for Knowledge-Based Analog Circuit Synthesis , 1987, 24th ACM/IEEE Design Automation Conference.

[20]  Andrzej J. Strojwas,et al.  VLSI Yield Prediction and Estimation: A Unified Framework , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[21]  M.J.M. Pelgrom,et al.  Matching properties of MOS transistors , 1989 .