Communication and Self-Organisation in Complex Systems: A Basic Approach

The emergence of complex behaviour in systems consisting of interacting elements is among the most fascinating phenomena of our world. Examples can be found in almost every field of today’s scientific interest, ranging from coherent pattern formation in physical and chemical systems (Feistel and Ebeling 1989; Cladis and Palffy-Muhoray 1995), to the motion of swarms of animals in biology (DeAngelis and Gross 1992) and the behaviour of social groups (Weidlich 1991; Vallacher and Nowak 1994). In the social and life sciences, it has generally been held that the evolution of social systems is determined by numerous factors —cultural, sociological, economic, political, and ecological, etc. However, in recent years, the development of the interdisciplinary ‘science of complexity’ has led to the insight that complex dynamic processes may also result from simple interactions. Moreover, at a certain level of abstraction, one can find many common features between complex structures in very different fields (Schweitzer 1997a, b).

[1]  Frank Schweitzer,et al.  Structural and functional information—an evolutionary approach to pragmatic information , 1997 .

[2]  Robin R. Vallacher,et al.  Dynamical Systems in Social Psychology , 1994 .

[3]  W. Brian Arthur,et al.  On designing economic agents that behave like human agents , 1993 .

[4]  Michael Sonis,et al.  Chaos and socio-spatial dynamics , 1990 .

[5]  Gernot Richter,et al.  The FTA design paradigm for distributed systems , 2000, Future Gener. Comput. Syst..

[6]  Gerald Silverberg,et al.  Evolution und Selbstorganisation in der Ökonomie = Evolution and self-organization in economics , 1998 .

[7]  Frank Schweitzer,et al.  Urban Cluster Growth: Analysis and Computer Simulation of Urban Aggregations , 1997 .

[8]  Klaus G. Troitzsch,et al.  Social Science Microsimulation , 1997 .

[9]  Hans-Georg Bartel,et al.  Selbstorganisation : Jahrbuch für Komplexität in den Natur-, Sozial- und Geisteswissenschaften , 1990 .

[10]  S. Solomon,et al.  Social percolation models , 1999, adap-org/9909001.

[11]  B. Latané,et al.  Statistical mechanics of social impact. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  Andreas Flache,et al.  Understanding Complex Social Dynamics: A Plea For Cellular Automata Based Modelling , 1998, J. Artif. Soc. Soc. Simul..

[13]  H. Föllmer Random economies with many interacting agents , 1974 .

[14]  J. M. Sakoda The checkerboard model of social interaction , 1971 .

[15]  Frank Schweitzer,et al.  Active brownian particles: Artificial agents in physics , 1997 .

[16]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[17]  Cristiano Castelfranchi,et al.  Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent Theories Architectures and Languages , 2000 .

[18]  Alan Kirman,et al.  Ants, Rationality, and Recruitment , 1993 .

[19]  Pattie Maes,et al.  Designing autonomous agents: Theory and practice from biology to engineering and back , 1990, Robotics Auton. Syst..

[20]  Wolfgang Weidlich,et al.  Physics and social science — The approach of synergetics , 1991 .

[21]  J. Holland,et al.  Artificial Adaptive Agents in Economic Theory , 1991 .

[22]  T. Schelling Models of Segregation , 1969 .

[23]  Werner Ebeling,et al.  Komplexe Strukturen: Entropie und Information , 1998 .

[24]  Peter Schuster,et al.  Self-organization in the physico-chemical and life sciences , 1995 .

[25]  David Lane,et al.  Decision Rules and Market Share: Aggregation in an Information Contagion Model , 1996 .

[26]  P. Palffy-Muhoray,et al.  Spatio-temporal patterns in nonequilibrium complex systems : NATO advanced research workshop , 1995 .

[27]  H. Eugene Stanley,et al.  Universal features in the growth dynamics of complex organizations , 1998, cond-mat/9804100.

[28]  Moshe Levy,et al.  Microscopic Simulation of the Stock Market: the Effect of Microscopic Diversity , 1995 .

[29]  Lui Lam,et al.  Modeling Complex Phenomena , 1992 .

[30]  Lui Lam,et al.  Active walker models for complex systems , 1995 .

[31]  Bart Verspagen,et al.  Collective learning, innovation and growth in a boundedly rational, evolutionary world , 1994 .

[32]  F. Schweitzer,et al.  Modelling collective opinion formation by means of active Brownian particles , 1999, adap-org/9911005.

[33]  Lutz Schimansky-Geier,et al.  Structure formation by active Brownian particles , 1995 .

[34]  Klaus G. Troitzsch,et al.  Modelling and simulation in the social sciences from the philosophy of science point of view , 1996 .

[35]  W. Weidlich,et al.  Concepts and Models of a Quantitative Sociology , 1983 .

[36]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[37]  Eve Passerini,et al.  Statistical mechanics of opinion formation and collective behavior: Micro‐sociology , 1998 .

[38]  Frank Schweitzer Modelling Migration and Economic Agglomeration with Active Brownian Particles , 1998, Adv. Complex Syst..

[39]  K. Kacperski,et al.  Phase transitions and hysteresis in a cellular automata-based model of opinion formation , 1996 .

[40]  Rainer Feistel,et al.  Evolution of complex systems : self-organization, entropy and development , 1989 .

[41]  S. Galam Rational group decision making: A random field Ising model at T = 0 , 1997, cond-mat/9702163.

[42]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[43]  David P. Miller,et al.  Intelligent Agents III Agent Theories, Architectures, and Languages , 1996, Lecture Notes in Computer Science.

[44]  W. Arthur,et al.  The Economy as an Evolving Complex System II , 1988 .

[45]  Heinz Mühlenbein,et al.  Coordination of Decisions in a Spatial Agent Model , 2001, ArXiv.

[46]  Wolfgang Weidlich,et al.  Sociodynamics: a Systematic Approach to Mathematical Modelling in the Social Sciences , 2000 .

[47]  D. Cliff From animals to animats , 1994, Nature.