Near-threshold fatigue-crack propagation in steels

AbstractThe characteristics of fatigue-crack propagation in metals and alloys have been the subject of several extensive reviews in recent years, but in very few instances have the details of ultralow growth rate, nearthreshold fatigue-crack propagation been similarly discussed. In this review the effects are examined of various mechanical, microstructural, and environmental factors which influence fatigue-crack propagation in steels at growth rates less than 10-6 mm/cycle, where the alternating stress intensity ∆K approaches the so-called threshold stress intensity ∆K0 below which crack growth cannot be experimentally detected. The marked influences of load ratio, material strength, and microstructure on such near-threshold growth are analysed in detail and rationalized in terms of possible environmental contributions and crackclosure concepts. These effects are contrasted with crack-propagation behaviour in other engineering materials and at higher growth rates.

[1]  A. Troiano,et al.  Hydrogen Permeability in a Stable Austenitic Stainless Steel , 1966 .

[2]  J. Bailon,et al.  The dependence of the threshold stress intensity factor on the cyclic stress ratio in fatigue of ferritic-pearlitic steels , 1975 .

[3]  P. C. Paris,et al.  Threshold for Fatigue Crack Propagation and the Effects of Load Ratio and Frequency , 1973 .

[4]  R. Ritchie Contribution on “slow fatigue crack growth and threshold behaviour of a medium carbon steel in air and vacuum” by R. J. Cooke, P. E. Irving, G. S. Booth and C. J. Beevers☆ , 1975 .

[5]  E. K. Priddle,et al.  System for Determining the Critical Range of Stress-Intensity Factor Necessary for Fatigue-Crack Propagation: , 1973 .

[6]  A. Ohta,et al.  Fatigue crack closure at stress intensity threshold level , 1975, International Journal of Fracture.

[7]  R. J. Cooke,et al.  The effect of load ratio on the threshold stresses for fatigue crack growth in medium carbon steels , 1973 .

[8]  P. Irving,et al.  Measurements of intergranular failure produced during fatigue crack growth in quenched and tempered steels , 1978 .

[9]  J. F. Knott,et al.  Mechanisms of fatigue crack growth in low alloy steel , 1973 .

[10]  G. Smith,et al.  Crack propagation in high stress fatigue , 1962 .

[11]  Robert P. Wei,et al.  Crack closure in 2219-T851 aluminum alloy , 1977 .

[12]  P. Irving,et al.  The effect of air and vacuum environments on fatigue crack growth rates in Ti-6Al-4V , 1974, Metallurgical and Materials Transactions B.

[13]  C. Beevers Fatigue crack growth characteristics at low stress intensities of metals and alloys , 1977 .

[14]  R. Pelloux,et al.  Crack extension by alternating shear , 1970 .

[15]  H. Suzuki,et al.  Microstructural effects on fatigue crack growth in a low carbon steel , 1979 .

[16]  V. F. Zackay,et al.  Effects of silicon additions and retained austenite on stress corrosion cracking in ultrahigh strength steels , 1978, Metallurgical and Materials Transactions A.

[17]  C. S. Carter The Effect of Silicon on the Stress Corrosion Resistance of Low Alloy High Strength Steels , 1969 .

[18]  Klaus-Jürgen Bathe,et al.  On the calibration of the electrical potential technique for monitoring crack growth using finite element methods , 1979 .

[19]  J. Knott,et al.  Segregation Effects and the Toughness of Untempered Low-Alloy Steels , 1972 .

[20]  W. Gerberich,et al.  Hydrogen-controlled cracking—An approach to threshold stress intensity , 1975 .

[21]  R. Ritchie Influence of impurity segregation on temper em brittlement and on slow fatigue crack growth and threshold behavior in 300-M high strength steel , 1977 .

[22]  R. Spurling,et al.  Hydride habit planes in titanium-aluminum alloys , 1976 .

[23]  A study of fatigue crack closure using electric potential and compliance techniques , 1977 .

[24]  M. Carlson ON THE EFFECT OF PRIOR AUSTENITE GRAIN SIZE ON NEAR-THRESHOLD FATIGUE CRACK GROWTH , 1977 .

[25]  Behavior of a tip of non-propagating fatigue crack during one stress cycle , 1974 .

[26]  O. Buck,et al.  Crack tip closure and environmental crack propagation , 1975 .

[27]  Robert O. Ritchie,et al.  Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel , 1977 .

[28]  P. Irving,et al.  Microstructural influences on fatigue crack growth in Ti6Al4V , 1974 .

[29]  Fatigue crack retardation and closure in polymethylmethacrylate , 1974 .

[30]  W. Gerberich,et al.  Grain Size Effects in Hydrogen-Assisted Cracking , 1976 .

[31]  Z. A. Foroulis,et al.  Environment-sensitive fracture of engineering materials : proceedings of a symposium held at the fall meeting of the Metallurgical Society of AIME in Chicago, Illinois, October 24-26, 1977 , 1979 .

[32]  M. Klesnil,et al.  Effect of stress cycle asymmetry on fatigue crack growth , 1972 .

[33]  G. Yoder,et al.  50-Fold Difference in Region-II Fatigue Crack Propagation Resistance of Titanium Alloys: A Grain-Size Effect , 1979 .

[34]  R. J. Cooke,et al.  Some Considerations of the Influence of Sub-Critical Cleavage Growth during Fatigue-Crack Propagation in Steels , 1975 .

[35]  R. Staehle,et al.  Advances in Corrosion Science and Technology , 1972 .

[36]  K. Sadananda,et al.  Prediction of threshold stress intensity for fatigue crack growth using a dislocation model , 1977 .

[37]  G. G. Garrett,et al.  Crack-growth monitoring: Optimisation of the electrical potential technique using an analogue method , 1971 .

[38]  M. E. Haddad,et al.  Fatigue Crack Propagation of Short Cracks , 1979 .

[39]  W. J. Plumbridge,et al.  Review: Fatigue-crack propagation in metallic and polymeric materials , 1972 .

[40]  R. A. Oriani,et al.  Equilibrium aspects of hydrogen-induced cracking of steels , 1974 .

[41]  O. Vosikovsky,et al.  The effect of stress ratio on fatigue crack growth rates in steels , 1979 .

[42]  P. Shewmon Hydrogen attack of carbon steel , 1976 .

[43]  G. Fowler The influence of non-metallic inclusions on the threshold behavior in fatigue , 1979 .

[44]  Robert P. Wei,et al.  Hydrogen enhanced crack growth in 18 Ni maraging steels , 1976 .

[45]  J. F. Knott,et al.  Effects of overloads on fatigue-crack propagation: aluminium alloys , 1977 .

[46]  Rl Meltzer,et al.  Threshold Corrosion Fatigue Crack Growth in Steels , 1978 .

[47]  R. J. Cooke,et al.  Slow fatigue crack propagation in pearlitic steels , 1974 .

[48]  Jacques Masounave,et al.  Effect of grain size on the threshold stress intensity factor in fatigue of a ferritic steel , 1976 .

[49]  J. R. Griffiths,et al.  Fatigue problems in power engineering , 1977 .

[51]  R. J. Cooke,et al.  The slow fatigue crack growth and threshold behaviour of a medium carbon alloy steel in air and vacuum , 1975 .

[52]  C. Gilpin,et al.  Microprocesses in Stress Corrosion of Martensitic Steels , 1966 .

[53]  C. Beevers,et al.  The Effects of Load Ratio, Interstitial Content, and Grain Size on Low-Stress Fatigue-Crack Propagation in α-Titanium , 1973 .

[54]  Takashi Miyata,et al.  The condition of fatigue crack growth in mixed mode condition , 1975 .

[55]  J. F. Knott,et al.  Micro cleavage cracking during fatigue crack propagation in low strength steel , 1974 .

[56]  Rp Wei,et al.  Fatigue Crack Growth Under Spectrum Loads , 1976 .

[57]  Akihiko Ohta,et al.  A method for determining the stress intensity threshold level for fatigue crack propagation , 1977 .

[58]  L. Pook Practical implications of the fatigue crack growth threshold , 1977 .

[59]  J. F. Knott,et al.  Fatigue crack propagation in a Type 316 stainless steel weldment , 1975 .

[60]  Volker Weiss,et al.  A note on the threshold condition for fatigue crack propagation , 1974 .

[61]  A. Thompson,et al.  The dependence of fatigue crack growth rate on grain size , 1973 .

[62]  J. Knott,et al.  Effects of Thickness on Fibrous Fracture from a Notch and on Fatigue-Crack Propagation in Low-Strength Steel , 1975 .

[63]  Crack closure in fatigue of a titanium alloy , 1975 .

[64]  A. W. Thompson,et al.  Effect of hydrogen on behavior of materials , 1976 .

[65]  S. Rolfe,et al.  Fatigue-crack propagation in high yield-strength steels , 1971 .

[66]  Anthony W. Thompson,et al.  Fatigue crack propagation in austenitic stainless steels , 1975 .

[67]  Paul C. Paris,et al.  SUB-CRITICAL FLAW GROWTH. , 1968 .

[68]  A. J. Mcevily Current aspects of fatigue , 1977 .

[69]  宮本 博 Recent research on mechanical behavior of solids , 1979 .

[70]  Fatigue crack closure in titanium and titanium alloys , 1973, International Journal of Fracture.

[71]  R. Ritchie,et al.  Optimization of the Electrical Potential Technique for Crack Growth Monitoring in Compact Test Pieces Using Finite Element Analysis , 1979 .

[72]  Rl Meltzer,et al.  Frequency, Stress Ratio, and Potential Effects on Fatigue Crack Growth of HY130 Steel in Salt Water , 1978 .

[73]  Ohta Akihiko,et al.  Influence of stress ratio on the threshold level for fatigue crack propagation in high strength steels , 1977 .

[74]  Rosenfeld Damage Tolerance in Aircraft Structures , 1971 .

[75]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[76]  Robert P. Wei,et al.  Gaseous hydrogen embrittlement of high strength steels , 1977 .

[77]  J. G. Kaufman,et al.  Progress in flaw growth and fracture toughness testing : proceedings of the 1972 National Symposium on Fracture Mechanics , 1973 .

[78]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[79]  Petr Lukáš,et al.  Influence of strength and stress history on growth and stabilisation of fatigue cracks , 1972 .

[80]  R. Latanision,et al.  The intergranular embrittlement of nickel by hydrogen: The effect of grain boundary segregation , 1974, Metallurgical and Materials Transactions B.

[81]  Robert P. Wei,et al.  Fracture mechanics and surface chemistry studies of subcritical crack growth in AISI 4340 steel , 1978 .

[82]  H. Marcus,et al.  The correlation between grain size and plastic zone size for environmental hydrogen assisted fatigue crack propagation , 1975 .