Perturbation theory for the radial distribution functions of dipolar and quadrupolar hard-sphere fluids

The radial distribution functions for the dipolar and the quadrupolar hard-sphere fluids are calculated by means of statistical-mechanical perturbation theory to third order using the hypernetted-chain (HNC) theory to approximate the perturbation terms. For both fluids the perturbation expansions through third order disagree with computer simulations, indicating that the expansion converges slowly. On the other hand, a Pade approximant, constructed from the second and third-order HNC terms, for each radial distribution function agrees excellently with the computer simulations.

[1]  G. Patey An integral equation theory for the dense dipolar hard-sphere fluid , 1977 .

[2]  Ye,et al.  New self‐consistent approximations for ionic and polar fluids , 1977 .

[3]  D. Chandler,et al.  Comparisons of Monte Carlo and RISM calculations of pair correlation functions , 1977 .

[4]  J. Rasaiah,et al.  Thermodynamic perturbation theory for multipolar and ionic liquids , 1977 .

[5]  W. Steele,et al.  Statistical mechanics of nonspherical molecules. VIII. Hard‐core models , 1977 .

[6]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[7]  W. Smith A perturbation expansion for the pair distribution function of fluids with non-central forces , 1976 .

[8]  W. G. Madden,et al.  Integral-equation perturbation theory for polar fluids , 1976 .

[9]  D. Tildesley,et al.  Computer simulations of polyatomic molecules - I. Monte Carlo studies of hard diatomics , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Ye,et al.  Approximate equilibrium pair correlation function for simple polar fluids , 1975 .

[11]  W. G. Madden,et al.  Perturbation theory and the radial distribution function of fluids with nonspherical potentials , 1975 .

[12]  W. G. Madden,et al.  Integral-equation perturbation theory for the radial distribution function of simple fluids , 1975 .

[13]  W. Kieffer Specialist Periodical Reports , 1975 .

[14]  W. Smith Some Old and New Expansions in the Perturbation Theory of Fluids , 1974 .

[15]  W. G. Madden,et al.  Perturbation theory for the radial distribution function for simple polar fluids , 1974 .

[16]  J. Perram,et al.  Perturbation theory for the angular correlation function , 1974 .

[17]  J. Valleau,et al.  Dipolar hard spheres: A Monte Carlo study , 1974 .

[18]  G. S. Rushbrooke,et al.  Theory of polar liquids , 1973 .

[19]  J. Barker,et al.  Theories of Liquids , 1972 .

[20]  K. Gubbins,et al.  Perturbation theory for the angular pair correlation function in molecular fluids , 1972 .

[21]  H. A. Levy,et al.  Liquid Water: Molecular Correlation Functions from X‐Ray Diffraction , 1971 .

[22]  A. Ben-Naim Application of an Approximate Percus-Yevick Equation for Liquid Water , 1970 .

[23]  J. A. Barker,et al.  Three-Body Forces in Dense Systems , 1968 .

[24]  J. A. Barker Cluster integrals and statistical mechanics of solutions , 1957, Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences.

[25]  J. Pople The statistical mechanics of assemblies of axially symmetric molecules - I. General theory , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.