General effective field theory of teleparallel gravity

We construct the effective field theory (EFT) of the teleparallel equivalent of general relativity (TEGR). Firstly, we present the necessary field redefinitions of the scalar field and the tetrads. Then we provide all the terms at next-to-leading-order, containing the torsion tensor and its derivatives, and derivatives of the scalar field, accompanied by generic scalar-field-dependent couplings, where all operators are suppressed by a scale Λ. Removing all redundant terms using the field redefinitions we result to the EFT of TEGR, which includes significantly more terms comparing to the EFT of general relativity (GR). Finally, we present an application in a cosmological framework. Interestingly enough, although GR and TEGR are completely equivalent at the level of classical equations, we find that their corresponding EFTs possess minor but non-zero differences. Hence, we do verify that at higher energies the excitation and the features of the extra degrees of freedom are slightly different in the two theories, thus making them theoretically distinguishable. Nevertheless, we mention that these differences are suppressed by the heavy mass scale Λ and thus it is not guaranteed that they could be measured in future experiments and observations.

[1]  G. Cabass,et al.  Snowmass white paper: Effective field theories in cosmology , 2022, Physics of the Dark Universe.

[2]  Y. Cai,et al.  Quasinormal modes of black holes in f(T) gravity , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  Y. Cai,et al.  N-body simulations, halo mass functions, and halo density profile in $f(T)$ gravity , 2022, 2204.06845.

[4]  S. Mukohyama,et al.  Effective field theory of black hole perturbations with timelike scalar profile: formulation , 2022, Journal of Cosmology and Astroparticle Physics.

[5]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[6]  A. Golovnev,et al.  Lorentz gauge-invariant variables in torsion-based theories of gravity , 2022, Physical Review D.

[7]  R. Percacci,et al.  Metric-Affine Gravity as an effective field theory , 2021, Annals of Physics.

[8]  David O. Jones,et al.  A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team , 2021, The Astrophysical Journal Letters.

[9]  A. Riess,et al.  The Pantheon+ Analysis: SuperCal-fragilistic Cross Calibration, Retrained SALT2 Light-curve Model, and Calibration Systematic Uncertainty , 2021, The Astrophysical Journal.

[10]  David O. Jones,et al.  The Pantheon+ Analysis: The Full Data Set and Light-curve Release , 2021, The Astrophysical Journal.

[11]  J. J. Relancio,et al.  Quantum gravity phenomenology at the dawn of the multi-messenger era—A review , 2021, Progress in Particle and Nuclear Physics.

[12]  R. Casadio,et al.  Quantum fields in teleparallel gravity: renormalization at one-loop , 2021, The European Physical Journal C.

[13]  M. Hendry,et al.  Teleparallel gravity: from theory to cosmology , 2021, Reports on progress in physics. Physical Society.

[14]  F. Finelli Snowmass2021 - Letter of Interest Cosmology Intertwined III: f σ 8 and S 8 , 2022 .

[15]  L. Hui,et al.  Effective Field Theory for the perturbations of a slowly rotating black hole , 2021, Journal of High Energy Physics.

[16]  C. Escamilla-Rivera,et al.  $f(T,B)$ cosmography for high redshifts , 2021, 2110.05434.

[17]  S. Capozziello,et al.  Modified Gravity and Cosmology: An Update by the CANTATA Network , 2021, 2105.12582.

[18]  A. Melchiorri,et al.  In the realm of the Hubble tension—a review of solutions , 2021, Classical and Quantum Gravity.

[19]  S. Chakraborty,et al.  Cosmic evolution in f(T) gravity theory , 2020, 2010.16247.

[20]  M. Hohmann Complete classification of cosmological teleparallel geometries , 2020, 2008.12186.

[21]  Tristan L. Smith,et al.  Cosmology Intertwined II: The Hubble Constant Tension , 2020, 2008.11284.

[22]  S. Bahamonde,et al.  Reviving Horndeski theory using teleparallel gravity after GW170817 , 2019, Physical Review D.

[23]  M. Mylova Chiral primordial gravitational waves in extended theories of Scalar-Tensor gravity , 2019, 1912.00800.

[24]  S. Bahamonde,et al.  Photon sphere and perihelion shift in weak f(T) gravity , 2019, Physical Review D.

[25]  M. Hohmann,et al.  Parametrized post-Newtonian limit of general teleparallel gravity theories , 2019, Physical Review D.

[26]  S. Davood Sadatian Effects of viscous content on the modified cosmological F(T) model , 2019, EPL (Europhysics Letters).

[27]  S. Bahamonde,et al.  Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.

[28]  C. Boehmer,et al.  Teleparallel theories of gravity: illuminating a fully invariant approach , 2018, Classical and Quantum Gravity.

[29]  Mustapha Ishak,et al.  Testing general relativity in cosmology , 2018, Living reviews in relativity.

[30]  J. Aumont,et al.  Planck2018 results , 2018, Astronomy & Astrophysics.

[31]  E. Linder,et al.  The well-tempered cosmological constant , 2018, Journal of Cosmology and Astroparticle Physics.

[32]  Y. Cai,et al.  The effective field theory approach of teleparallel gravity, f(T) gravity and beyond , 2018, Journal of Cosmology and Astroparticle Physics.

[33]  M. Visser Rastall gravity is equivalent to Einstein gravity , 2017, Physics Letters B.

[34]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data , 2017, Monthly Notices of the Royal Astronomical Society.

[35]  C. Charmousis,et al.  Beyond Lovelock gravity: higher derivative metric theories , 2017, 1710.04531.

[36]  Tiberiu Harko,et al.  f(R, T) Gravity , 2011, Extensions of f(R) Gravity.

[37]  M. Trodden,et al.  Higher-derivative operators and effective field theory for general scalar-tensor theories , 2017, 1709.09695.

[38]  J. Said,et al.  Stability of the flat FLRW metric in f(T) gravity , 2016, 1701.00134.

[39]  Adam G. Riess,et al.  The trouble with H0 , 2016, 1607.05617.

[40]  S. Capozziello,et al.  f(T) teleparallel gravity and cosmology , 2015, Reports on progress in physics. Physical Society.

[41]  C. Boehmer,et al.  Modified teleparallel theories of gravity , 2015, 1508.05120.

[42]  Richard Woodard,et al.  Ostrogradsky's theorem on Hamiltonian instability , 2015, Scholarpedia.

[43]  S. Tsujikawa The Effective Field Theory of Inflation/Dark Energy and the Horndeski Theory , 2014, 1404.2684.

[44]  E. Papantonopoulos Modifications of Einstein's theory of gravity at large distances , 2015 .

[45]  L. McAllister,et al.  Inflation and String Theory , 2014, 1404.2601.

[46]  E. Saridakis,et al.  Teleparallel equivalent of Gauss-Bonnet gravity and its modifications , 2014, 1404.2249.

[47]  U. Heidelberg,et al.  Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian , 2013, 1308.4685.

[48]  S. Odintsov,et al.  Conformal symmetry and accelerating cosmology in teleparallel gravity , 2013, 1308.5789.

[49]  J. Bain Effective field theories , 2013 .

[50]  Antonio Padilla,et al.  Modified Gravity and Cosmology , 2011, 1106.2476.

[51]  E. Saridakis,et al.  Teleparallel dark energy , 2011, 1109.1092.

[52]  J. Maldacena,et al.  On graviton non-gaussianities during inflation , 2011, 1104.2846.

[53]  E. Saridakis,et al.  Cosmological perturbations in f(T) gravity , 2010, 1008.1250.

[54]  Sergei D. Odintsov,et al.  Unified cosmic history in modified gravity: From F ( R ) theory to Lorentz non-invariant models , 2010, 1011.0544.

[55]  Q. Huang,et al.  Growth factor in $f(T)$ gravity , 2010, 1010.3512.

[56]  E. Linder Einstein's other gravity and the acceleration of the Universe , 2010, 1005.3039.

[57]  S. Capozziello,et al.  Dark energy from modified gravity with Lagrange multipliers , 2010, 1004.3691.

[58]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[59]  R. Ferraro,et al.  Dark torsion as the cosmic speed-up , 2008, 0812.1205.

[60]  R. Rattazzi,et al.  Galileon as a local modification of gravity , 2008, 0811.2197.

[61]  Franco Fiorini,et al.  Born-Infeld gravity in Weitzenböck spacetime , 2008, 0812.1981.

[62]  S. Tsujikawa,et al.  Construction of cosmologically viable f(G) dark energy models , 2008, 0810.5712.

[63]  S. Weinberg Effective field theory for inflation , 2008, 0804.4291.

[64]  Franco Fiorini,et al.  Modified teleparallel gravity : Inflation without an inflaton , 2006, gr-qc/0610067.

[65]  S. Nojiri,et al.  Modified Gauss–Bonnet theory as gravitational alternative for dark energy , 2005, hep-th/0508049.

[66]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[67]  S. Capozziello Curvature Quintessence , 2002, gr-qc/0201033.

[68]  B. Holstein Introduction to effective field theory , 2000, nucl-th/0010015.

[69]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[70]  H. Georgi Introduction to Effective Field Theories , 1996 .

[71]  C. Arzt Reduced effective lagrangians , 1993, hep-ph/9304230.

[72]  Grosse-Knetter,et al.  Effective Lagrangians with higher derivatives and equations of motion. , 1994, Physical review. D, Particles and fields.

[73]  D. Caldwell,et al.  Dark Matter Detection , 2003 .

[74]  Howard Georgi,et al.  On-shell effective field theory☆☆☆ , 1991 .

[75]  Deruelle,et al.  Lovelock gravitational field equations in cosmology. , 1990, Physical review. D, Particles and fields.

[76]  Unruh,et al.  Unimodular theory of canonical quantum gravity. , 1989, Physical review. D, Particles and fields.

[77]  P. Mannheim,et al.  Exact vacuum solution to conformal Weyl gravity and galactic rotation curves , 1989 .

[78]  J. Wheeler Symmetric solutions to the Gauss-Bonnet extended Einstein equations , 1986 .

[79]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[80]  K. Hayashi,et al.  New General Relativity , 1979 .

[81]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .

[82]  D. Lovelock The Einstein Tensor and Its Generalizations , 1971 .

[83]  M. Ostrogradsky Mémoires sur les équations différentielles, relatives au problème des isopérimètres , 1850 .