Time-varying coefficient model estimation through radial basis functions

In this paper we estimate the dynamic parameters of a time-varying coefficient model through radial kernel functions in the context of a longitudinal study. Our proposal is based on a linear combination of weighted kernel functions involving a bandwidth, centered around a given set of time points. In addition, we study different alternatives of estimation and inference including a Frequentist approach using weighted least squares along with bootstrap methods, and a Bayesian approach through both Markov chain Monte Carlo and variational methods. We compare the estimation strategies mention above with each other, and our radial kernel functions proposal with an expansion based on regression spline, by means of an extensive simulation study considering multiples scenarios in terms of sample size, number of repeated measurements, and subject-specific correlation. Our experiments show that the capabilities of our proposal based on radial kernel functions are indeed comparable with or even better than those obtained from regression splines. We illustrate our methodology by analyzing data from two AIDS clinical studies.

[1]  David Ruppert,et al.  Semiparametric Regression with R , 2018 .

[2]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[3]  Runze Li,et al.  Quadratic Inference Functions for Varying‐Coefficient Models with Longitudinal Data , 2006, Biometrics.

[4]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[5]  Zhiliang Ying,et al.  Semiparametric and Nonparametric Regression Analysis of Longitudinal Data , 2001 .

[6]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[7]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[8]  Yiqiang Lu,et al.  Smoothing spline estimation of generalised varying-coefficient mixed model , 2009 .

[9]  Colin O. Wu,et al.  Nonparametric Estimation of Conditional Distributions and Rank-Tracking Probabilities With Time-Varying Transformation Models in Longitudinal Studies , 2013 .

[10]  Yang Wang Varying-coefficient models: New models, inference procedures and applications , 2007 .

[11]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[12]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[13]  Chunfeng Huang,et al.  Smoothing spline estimation in varying‐coefficient models , 2004 .

[14]  Nicoleta Serban,et al.  A space–time varying coefficient model: The equity of service accessibility , 2011, 1111.7120.

[15]  Damla Şentürk,et al.  Functional Varying Coefficient Models for Longitudinal Data , 2010 .

[16]  Yangxin Huang,et al.  Bayesian inference on mixed-effects varying-coefficient joint models with skew-t distribution for longitudinal data with multiple features , 2017, Statistical methods in medical research.

[17]  Zhaowei Hua Bayesian Analysis of Varying Coefficient Models and Applications , 2011 .

[18]  Peter D. Hoff,et al.  A First Course in Bayesian Statistical Methods , 2009 .

[19]  Chin-Tsang Chiang,et al.  Smoothing Spline Estimation for Varying Coefficient Models With Repeatedly Measured Dependent Variables , 2001 .

[20]  C. F. Sirmans,et al.  Spatial Modeling With Spatially Varying Coefficient Processes , 2003 .

[21]  Jin-Ting Zhang,et al.  Analysis of Variance for Functional Data , 2013 .

[22]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[23]  Damla Şentürk,et al.  Generalized varying coefficient models for longitudinal data , 2008 .

[24]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[25]  Minjae Park,et al.  Analysis of binary longitudinal data with time-varying effects , 2017, Comput. Stat. Data Anal..

[26]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[27]  I. Gijbels,et al.  Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity , 2018 .

[28]  S. Hammer,et al.  A randomized trial of 2 different 4-drug antiretroviral regimens versus a 3-drug regimen, in advanced human immunodeficiency virus disease. , 2003, The Journal of infectious diseases.

[29]  Ludwig Fahrmeir,et al.  Bayesian varying-coefficient models using adaptive regression splines , 2001 .

[30]  Jian Huang,et al.  VARIABLE SELECTION AND ESTIMATION IN HIGH-DIMENSIONAL VARYING-COEFFICIENT MODELS. , 2011, Statistica Sinica.

[31]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[32]  Jianhui Zhou,et al.  Quantile regression in partially linear varying coefficient models , 2009, 0911.3501.

[33]  William M. Shyu,et al.  Local Regression Models , 2017 .

[34]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[35]  M. Kenward,et al.  Handbook of Missing Data Methodology , 2019 .

[36]  An Application of Various Nonparametric Techniques by Nonparametric Regression Splines , 2012 .

[37]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[38]  David Ruppert,et al.  Semiparametric Regression: Author Index , 2003 .

[39]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[40]  Timothy J. Robinson,et al.  Linear Models With R , 2005, Technometrics.

[41]  Hulin Wu,et al.  Backfitting Random Varying‐Coefficient Models with Time‐Dependent Smoothing Covariates , 2004 .

[42]  R. Carroll,et al.  Nonparametric Function Estimation for Clustered Data When the Predictor is Measured without/with Error , 2000 .

[43]  Renato M. Assunção,et al.  Space varying coefficient models for small area data , 2003 .

[44]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[45]  M. Lederman,et al.  Immune reconstitution in the first year of potent antiretroviral therapy and its relationship to virologic response. , 2000, The Journal of infectious diseases.

[46]  Hulin Wu,et al.  Local Polynomial Mixed-Effects Models for Longitudinal Data , 2002 .

[47]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[48]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[49]  J. Raz,et al.  Semiparametric Stochastic Mixed Models for Longitudinal Data , 1998 .

[50]  Hulin Wu,et al.  Nonparametric regression methods for longitudinal data analysis , 2006 .

[51]  S. Shott,et al.  Nonparametric Statistics , 2018, The Encyclopedia of Archaeological Sciences.

[52]  R. Carroll,et al.  The relationship between virologic and immunologic responses in AIDS clinical research using mixed-effects varying-coefficient models with measurement error. , 2003, Biostatistics.

[53]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[54]  Julie Swann,et al.  Spatial accessibility of pediatric primary healthcare: Measurement and inference , 2014, 1501.03626.

[55]  Dennis M. Gorman,et al.  Quantifying geographic variations in associations between alcohol distribution and violence: a comparison of geographically weighted regression and spatially varying coefficient models , 2007 .

[56]  Damla Şentürk,et al.  Modeling time‐varying effects with generalized and unsynchronized longitudinal data , 2013, Statistics in medicine.

[57]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[58]  M. Wand,et al.  Explaining Variational Approximations , 2010 .

[59]  Colin O. Wu,et al.  Nonparametric Models for Longitudinal Data: With Implementation in R , 2018 .

[60]  Juan Sosa,et al.  RANDOM TIME-VARYING COEFFICIENT MODEL ESTIMATION THROUGH RADIAL BASIS FUNCTIONS , 2012 .

[61]  Haavard Rue,et al.  A unified view on Bayesian varying coefficient models , 2018, Electronic Journal of Statistics.

[62]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[63]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[64]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[65]  Cheng Hsiao,et al.  Longitudinal Data Analysis , 2015 .

[66]  Yanyuan Ma,et al.  Functional random effect time‐varying coefficient model for longitudinal data , 2012, Stat.

[67]  Runze Li,et al.  A time-varying effect model for intensive longitudinal data. , 2012, Psychological methods.

[68]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .

[69]  Xian Liu,et al.  Methods and Applications of Longitudinal Data Analysis , 2015 .

[70]  Colin O. Wu,et al.  Nonparametric estimation for time-varying transformation models with longitudinal data , 2010 .

[71]  M. Lederman,et al.  Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine, lamivudine, and ritonavir: results of AIDS Clinical Trials Group Protocol 315. , 1998, The Journal of infectious diseases.

[72]  Spencer Graves,et al.  Functional Data Analysis with R and MATLAB , 2009 .

[73]  Taeyoung Park,et al.  Bayesian Semiparametric Inference on Functional Relationships in Linear Mixed Models , 2016 .

[74]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .