On the Schoenberg Transformations in Data Analysis: Theory and Illustrations
暂无分享,去创建一个
[1] René L. Schilling,et al. Bernstein Functions: Theory and Applications , 2010 .
[2] A. Householder,et al. Discussion of a set of points in terms of their mutual distances , 1938 .
[3] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[4] D. Alpay,et al. On the characteristics of a class of Gaussian processes within the white noise space setting , 2009, 0909.4267.
[5] C. Cuadras,et al. The Proximity of an Individual to a Population with Applications in Discriminant Analysis , 1997 .
[6] S. Bernstein,et al. Sur les fonctions absolument monotones , 1929 .
[7] Rajendra Bhatia,et al. Infinitely Divisible Matrices , 2006, Am. Math. Mon..
[8] G. Christakos. On the Problem of Permissible Covariance and Variogram Models , 1984 .
[9] J. Gower. Some distance properties of latent root and vector methods used in multivariate analysis , 1966 .
[10] Jorge Mateu,et al. The Dagum family of isotropic correlation functions , 2007, 0705.0456.
[11] L. Lebart,et al. Statistique exploratoire multidimensionnelle , 1995 .
[12] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[13] Alex Smola,et al. Kernel methods in machine learning , 2007, math/0701907.
[14] S. Joly,et al. Étude des puissances d'une distance , 1986 .
[15] Xizhao Wang,et al. On linear separability of data sets in feature space , 2007, Neurocomputing.
[16] François Bavaud. Spectral Clustering and Multidimensional Scaling: A Unified View , 2006, Data Science and Classification.
[17] G.B.M Heuvelink. Interpolation of Spatial Data: Some Theory for Kriging: M.L. Stein, Springer, New York, 1999. Hardcover, 247 pp., US$ 49.95, ISBN 0-387-98629-4 , 2000 .
[18] Frank Critchley,et al. The partial order by inclusion of the principal classes of dissimilarity on a finite set, and some of their basic properties , 1994 .
[19] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[20] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[21] Jorge Mateu,et al. The Dagum family of isotropic correlation , 2008 .
[22] Calyampudi R. Rao. The use and interpretation of principal component analysis in applied research , 1964 .
[23] Mia Hubert,et al. LIBRA: a MATLAB library for robust analysis , 2005 .
[24] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[25] Leonard M. Blumenthal,et al. Theory and applications of distance geometry , 1954 .
[26] Tomás Aluja,et al. Book review: Multiple correspondence analysis and related methods. Greenacre, M. and Blasius, J. Chapman & Hall/CRC, 2006. , 2006 .
[27] N. Campbell. Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .
[28] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[29] Joseph L. Zinnes,et al. Theory and Methods of Scaling. , 1958 .
[30] M. Greenacre,et al. Multiple Correspondence Analysis and Related Methods , 2006 .
[31] David Kaplan,et al. The Sage handbook of quantitative methodology for the social sciences , 2004 .
[32] I. J. Schoenberg,et al. Fourier integrals and metric geometry , 1941 .
[33] W. Härdle. Smoothing Techniques: With Implementation in S , 1991 .
[34] Christopher K. I. Williams. On a Connection between Kernel PCA and Metric Multidimensional Scaling , 2004, Machine Learning.
[35] Bernhard Schölkopf,et al. The Kernel Trick for Distances , 2000, NIPS.
[36] A. D. Gordon,et al. Correspondence Analysis Handbook. , 1993 .
[37] Vladimir Vapnik,et al. The Nature of Statistical Learning , 1995 .
[38] R. Horn,et al. On fractional Hadamard powers of positive definite matrices*1, *2 , 1977 .
[39] François Bavaud,et al. Aggregation invariance in general clustering approaches , 2009, Adv. Data Anal. Classif..
[40] David Haussler,et al. Convolution kernels on discrete structures , 1999 .
[41] Carles M. Cuadras,et al. Weighted continuous metric scaling , 1996 .
[42] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[43] P. Groenen,et al. Modern Multidimensional Scaling: Theory and Applications , 1999 .
[44] J. Gower. Euclidean Distance Geometry , 1982 .
[45] Willem J. Heiser,et al. Principal Components Analysis With Nonlinear Optimal Scaling Transformations for Ordinal and Nominal Data , 2005 .
[46] I. J. Schoenberg. On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .
[47] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[48] Vladimir Cherkassky,et al. The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.
[49] Werner A. Stahel,et al. Robust Statistics: The Approach Based on Influence Functions , 1987 .