Sub-nanosecond switching in a cryogenic spin-torque spin-valve memory element with a dilute permalloy free layer

We present a study of the pulsed current switching characteristics of spin-valve nanopillars with in-plane magnetized dilute permalloy and undiluted permalloy free layers in the ballistic regime at low temperature. The dilute permalloy free layer device switches much faster: the characteristic switching time for a permalloy free (Ni0.83Fe0.17) layer device is 1.18 ns, while that for a dilute permalloy ([Ni0.83Fe0.17]0.6Cu0.4) free layer device is 0.475 ns. A ballistic macrospin model can capture the data trends with a reduced spin torque asymmetry parameter, reduced spin polarization and increased Gilbert damping for the dilute permalloy free layer relative to the permalloy devices. Our study demonstrates that reducing the magnetization of the free layer increases the switching speed while greatly reducing the switching energy and shows a promising route toward even lower power magnetic memory devices compatible with superconducting electronics.

[1]  J. Katine,et al.  Co2MnGe-based current-perpendicular-to-the-plane giant-magnetoresistance spin-valve sensors for recording head applications , 2011 .

[2]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[3]  J. Katine,et al.  Dynamics of spin torque switching in all-perpendicular spin valve nanopillars , 2014 .

[4]  Yasuo Ando,et al.  Half-metallicity and Gilbert damping constant in Co2FexMn1−xSi Heusler alloys depending on the film composition , 2009 .

[5]  T. A. Ohki,et al.  A cryogenic spin-torque memory element with precessional magnetization dynamics , 2019, Scientific Reports.

[6]  M. D. Stiles,et al.  Anatomy of spin-transfer torque , 2002 .

[7]  J. Katine,et al.  Time-resolved reversal of spin-transfer switching in a nanomagnet. , 2004, Physical review letters.

[8]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[9]  Eric E. Fullerton,et al.  Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy , 2010 .

[10]  M. Stiles,et al.  Non-collinear spin transfer in Co/Cu/Co multilayers | NIST , 2002 .

[11]  Andrew D Kent,et al.  A new spin on magnetic memories. , 2015, Nature nanotechnology.

[12]  T. Devolder,et al.  Direct evidence for minority spin gap in the Co2MnSi Heusler alloy , 2015, 1510.05085.

[13]  Justin M. Shaw,et al.  Probing the timescale of the exchange interaction in a ferromagnetic alloy , 2012, Proceedings of the National Academy of Sciences.

[14]  L. Connors,et al.  Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin films , 2007 .

[15]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[16]  S. Tahara,et al.  A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield , 1995, IEEE Transactions on Applied Superconductivity.

[17]  J. Slonczewski Currents and torques in metallic magnetic multilayers , 2002 .

[18]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[19]  Noncollinear spin transfer in Co/Cu/Co multilayers (invited) , 2001, cond-mat/0110275.

[20]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[21]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[22]  Xiaofan Meng,et al.  64-kb Hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps Access Time and 12 mW Read Power , 2013, IEEE Transactions on Applied Superconductivity.