Localized Thermal Gradients On-Chip by Radiative Cooling of Silicon Nitride Nanomechanical Resonators

[1]  Meijie Chen,et al.  All-day continuous electrical power generator by solar heating and radiative cooling from the sky , 2022, Applied Energy.

[2]  G. Tan,et al.  Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation , 2022, Applied Energy.

[3]  G. Pei,et al.  Radiative cooling of solar cells with micro-grating photonic cooler , 2022, Renewable Energy.

[4]  Wei Li,et al.  Photonics and thermodynamics concepts in radiative cooling , 2022, Nature Photonics.

[5]  A. Weck,et al.  Observation of Silicon Nitride Nanomechanical Resonator Actuation Using Capacitive Substrate Excitation , 2021, 2112.09303.

[6]  Meijie Chen,et al.  Passive daytime radiative cooling: Fundamentals, material designs, and applications , 2021, EcoMat.

[7]  R. St-Gelais,et al.  Heat Transport in Silicon Nitride Drum Resonators and its Influence on Thermal Fluctuation-Induced Frequency Noise , 2021, Physical Review Applied.

[8]  A. Tredicucci,et al.  Micromechanical Bolometers for Subterahertz Detection at Room Temperature , 2021, ACS photonics.

[9]  M. Stephan,et al.  High resolution measurement of near-field radiative heat transfer enabled by nanomechanical resonators , 2021, Applied Physics Letters.

[10]  Y. Ye,et al.  Quasi-periodic selective multilayer emitter for sub-ambient daytime radiative cooling , 2021 .

[11]  Min Chen,et al.  A structural polymer for highly efficient all-day passive radiative cooling , 2021, Nature Communications.

[12]  P. Bermel,et al.  Lightweight, Passive Radiative Cooling to Enhance Concentrating Photovoltaics , 2020, Joule.

[13]  T. Nagao,et al.  Radiative cooling for continuous thermoelectric power generation in day and night , 2020 .

[14]  O. Hansen,et al.  Thermal radiation dominated heat transfer in nanomechanical silicon nitride drum resonators , 2020, Applied Physics Letters.

[15]  R. St-Gelais,et al.  Radiative Heat Transfer in Freestanding Silicon Nitride Membranes , 2020, Physical Review Applied.

[16]  S. Fan,et al.  Generating Light from Darkness , 2019, Joule.

[17]  Silvan Schmid,et al.  Nanoelectromechanical infrared detector , 2019, NanoScience + Engineering.

[18]  Gang Pei,et al.  Radiative cooling: A review of fundamentals, materials, applications, and prospects , 2019, Applied Energy.

[19]  J. Sankey,et al.  Swept-Frequency Drumhead Optomechanical Resonators , 2019, ACS Photonics.

[20]  Dasol Lee,et al.  Metamaterial-Based Radiative Cooling: Towards Energy-Free All-Day Cooling , 2018, Energies.

[21]  B. Alemán,et al.  A fast, sensitive, room-temperature graphene nanomechanical bolometer , 2019 .

[22]  Sun-Kyung Kim,et al.  Visible to near-infrared thermal radiation from nanostructured tungsten anntennas , 2018, Journal of Optics.

[23]  Baoling Huang,et al.  Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration , 2018, Nano Energy.

[24]  Srinivas Katipamula,et al.  Performance assessment of a photonic radiative cooling system for office buildings , 2018 .

[25]  Xiaoliang Ma,et al.  Broadband metamaterial as an “invisible” radiative cooling coat , 2018 .

[26]  O. Muskens,et al.  Metasurface Optical Solar Reflectors Using AZO Transparent Conducting Oxides for Radiative Cooling of Spacecraft , 2017 .

[27]  Jia Li,et al.  A Universal Route to Realize Radiative Cooling and Light Management in Photovoltaic Modules , 2017 .

[28]  M. Pinar Mengüç,et al.  Passive radiative cooling design with broadband optical thin-film filters , 2017 .

[29]  Changying Zhao,et al.  Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling , 2017 .

[30]  M. Alam,et al.  Radiative sky cooling: fundamental physics, materials, structures, and applications , 2017 .

[31]  Shanhui Fan,et al.  A Comprehensive Photonic Approach for Solar Cell Cooling , 2017 .

[32]  Aaswath Raman,et al.  Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle , 2016, Nature Communications.

[33]  Xing Lu,et al.  Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art , 2016 .

[34]  Dawen Li,et al.  Modelling of segmented high-performance thermoelectric generators with effects of thermal radiation, electrical and thermal contact resistances , 2016, Scientific Reports.

[35]  Min Gu,et al.  Radiative Cooling: Principles, Progress, and Potentials , 2016, Advanced science.

[36]  J. Sankey,et al.  Ultralow-Noise SiN Trampoline Resonators for Sensing and Optomechanics , 2015, 1511.01769.

[37]  Shanhui Fan,et al.  Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody , 2015, Proceedings of the National Academy of Sciences.

[38]  Min Gu,et al.  A Metamaterial Emitter for Highly Efficient Radiative Cooling , 2015 .

[39]  J. Richard,et al.  Thermal conductivity of silicon nitride membranes is not sensitive to stress , 2015, 1506.01838.

[40]  Geoff B. Smith,et al.  A Subambient Open Roof Surface under the Mid‐Summer Sun , 2015, Advanced science.

[41]  Alexander Berk,et al.  An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails , 2015, Defense + Security Symposium.

[42]  Marc Abou Anoma,et al.  Passive radiative cooling below ambient air temperature under direct sunlight , 2014, Nature.

[43]  Aaswath Raman,et al.  Radiative cooling of solar cells , 2014 .

[44]  Alexander Berk,et al.  MODTRAN6: a major upgrade of the MODTRAN radiative transfer code , 2014, Defense + Security Symposium.

[45]  L. Lorenzelli,et al.  Development and characterization of a microthermoelectric generator with plated copper/constantan thermocouples , 2014 .

[46]  Federico Capasso,et al.  Harvesting renewable energy from Earth’s mid-infrared emissions , 2014, Proceedings of the National Academy of Sciences.

[47]  C. Zhang,et al.  Graphene based piezoresistive pressure sensor , 2013 .

[48]  Aaswath Raman,et al.  Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. , 2013, Nano letters.

[49]  Shuo Zhang,et al.  Cooling performance of nocturnal radiative cooling combined with microencapsulated phase change material (MPCM) slurry storage , 2012 .

[50]  Edward J. Wollack,et al.  Infrared dielectric properties of low-stress silicon nitride. , 2012, Optics letters.

[51]  C. Regal,et al.  Control of material damping in high-Q membrane microresonators. , 2011, Physical review letters.

[52]  Qian Zhang,et al.  Thermoelectric Property Studies on Cu‐Doped n‐type CuxBi2Te2.7Se0.3 Nanocomposites , 2011 .

[53]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[54]  H. Macleod,et al.  Thin-Film Optical Filters, Fourth Edition , 2010 .

[55]  Robert F. Cook,et al.  Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride films , 2003 .

[56]  Vincent Senez,et al.  Measurement of the elastic and viscoelastic properties of dielectric films used in microelectronics , 2002 .

[57]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[58]  O. Heavens Thin-film Optical Filters , 1986 .

[59]  T. S. Eriksson,et al.  Materials for radiative cooling to low temperature , 1984 .

[60]  P. Berdahl,et al.  Thermal performance of radiative cooling panels , 1983 .

[61]  S. B. Idso,et al.  A model of thermal radiation from partly cloudy and overcast skies , 1982 .

[62]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[63]  C. Granqvist,et al.  Radiative cooling to low temperatures with selectivity IR-emitting surfaces☆ , 1982 .

[64]  A. Hjortsberg,et al.  Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films , 1981 .

[65]  Mehdi N. Bahadori,et al.  Passive Cooling Systems in Iranian Architecture , 1978, Renewable Energy.

[66]  D. Ruggi,et al.  The radiative cooling of selective surfaces , 1975 .

[67]  Ken Howard San Diego , 2003, Nature.

[68]  A. W. Harrison Effect of atmospheric humidity on radiation cooling , 1981 .

[69]  L. Nicolais,et al.  Light selective structures for large scale natural air conditioning , 1980 .

[70]  A. W. Harrison,et al.  Radiative cooling of TiO2 white paint , 1978 .

[71]  George S. Springer,et al.  Heat Transfer in Rarefied Gases , 1971 .