Large scale multi-label learning using Gaussian processes
暂无分享,去创建一个
[1] Neil D. Lawrence,et al. Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..
[2] Jeffrey Dean,et al. Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.
[3] Min-Ling Zhang,et al. A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.
[4] Yee Whye Teh,et al. Semiparametric latent factor models , 2005, AISTATS.
[5] Bernhard Schölkopf,et al. DiSMEC: Distributed Sparse Machines for Extreme Multi-label Classification , 2016, WSDM.
[6] Saso Dzeroski,et al. Ensembles of Multi-Objective Decision Trees , 2007, ECML.
[7] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[8] Edwin V. Bonilla,et al. Multi-task Gaussian Process Prediction , 2007, NIPS.
[9] Roni Khardon,et al. Sparse Variational Inference for Generalized GP Models , 2015, ICML.
[10] Manik Varma,et al. FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning , 2014, KDD.
[11] Stephen J. Roberts,et al. Variational Inference for Gaussian Process Modulated Poisson Processes , 2014, ICML.
[12] Prateek Jain,et al. Sparse Local Embeddings for Extreme Multi-label Classification , 2015, NIPS.
[13] Róbert Busa-Fekete,et al. A no-regret generalization of hierarchical softmax to extreme multi-label classification , 2018, NeurIPS.
[14] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[15] Geoff Holmes,et al. Classifier chains for multi-label classification , 2009, Machine Learning.
[16] Yannis Papanikolaou,et al. Subset Labeled LDA: A Topic Model for Extreme Multi-label Classification , 2018, DaWaK.
[17] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[18] Manik Varma,et al. Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications , 2016, KDD.
[19] Bernhard Schölkopf,et al. Data scarcity, robustness and extreme multi-label classification , 2019, Machine Learning.
[20] Pradeep Ravikumar,et al. PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification , 2016, ICML.
[21] Pradeep Ravikumar,et al. PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification , 2017, KDD.
[22] Sebastián Ventura,et al. Multi‐label learning: a review of the state of the art and ongoing research , 2014, WIREs Data Mining Knowl. Discov..
[23] Antonio Artés-Rodríguez,et al. Heterogeneous Multi-output Gaussian Process Prediction , 2018, NeurIPS.
[24] Neil D. Lawrence,et al. Gaussian Processes for Big Data , 2013, UAI.
[25] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[26] Grigorios Tsoumakas,et al. Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..
[27] FrankEibe,et al. Classifier chains for multi-label classification , 2011 .
[28] Ehsan Abbasnejad,et al. Label Filters for Large Scale Multilabel Classification , 2017, AISTATS.
[29] Inderjit S. Dhillon,et al. Gradient Boosted Decision Trees for High Dimensional Sparse Output , 2017, ICML.
[30] Piyush Rai,et al. Scalable Generative Models for Multi-label Learning with Missing Labels , 2017, ICML.
[31] Michalis K. Titsias,et al. Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.
[32] Johannes Fürnkranz,et al. Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain , 2008, ECML/PKDD.
[33] Jason Weston,et al. WSABIE: Scaling Up to Large Vocabulary Image Annotation , 2011, IJCAI.
[34] Christopher K. I. Williams,et al. Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .
[35] Johannes Fürnkranz,et al. Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification , 2017, NIPS.
[36] Neil D. Lawrence,et al. Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes , 2017, NIPS.
[37] Ashish Kapoor,et al. Multilabel Classification using Bayesian Compressed Sensing , 2012, NIPS.
[38] Georgios Paliouras,et al. LSHTC: A Benchmark for Large-Scale Text Classification , 2015, ArXiv.
[39] Edwin V. Bonilla,et al. Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.
[40] Grigorios Tsoumakas,et al. Multilabel Text Classification for Automated Tag Suggestion , 2008 .
[41] James Hensman,et al. On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.
[42] Anton van den Hengel,et al. Image-Based Recommendations on Styles and Substitutes , 2015, SIGIR.
[43] Eyke Hüllermeier,et al. Extreme F-measure Maximization using Sparse Probability Estimates , 2016, ICML.
[44] Richard E. Turner,et al. A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation , 2016, J. Mach. Learn. Res..
[45] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[46] D. Stoyan,et al. Hans Wackernagel: Multivariate Geostatistics. An Introduction with Applications. With 75 Figures and 5 Tables. Springer-Verlag, Berlin, Heidelberg, New York, 235 pp., 1995, DM 68.-ISBN 3-540-60127-9 , 1996 .
[47] James Hensman,et al. Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models , 2018, AISTATS.
[48] CsatóLehel,et al. Sparse on-line Gaussian processes , 2002 .
[49] C. Bauckhage,et al. Analyzing Social Bookmarking Systems : A del . icio . us Cookbook , 2008 .
[50] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[51] James Hensman,et al. Scalable Variational Gaussian Process Classification , 2014, AISTATS.
[52] Zhi-Hua Zhou,et al. ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..
[53] Yukihiro Tagami,et al. AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification , 2017, KDD.
[54] Hong Gu,et al. Bayesian multi-instance multi-label learning using Gaussian process prior , 2012, Machine Learning.
[55] Neil D. Lawrence,et al. Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..
[56] M. Opper. Sparse Online Gaussian Processes , 2008 .
[57] Grigorios Tsoumakas,et al. Effective and Efficient Multilabel Classification in Domains with Large Number of Labels , 2008 .
[58] Inderjit S. Dhillon,et al. Large-scale Multi-label Learning with Missing Labels , 2013, ICML.
[59] Rohit Babbar,et al. Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification , 2019, ArXiv.
[60] Sebastián Ventura,et al. A Tutorial on Multilabel Learning , 2015, ACM Comput. Surv..
[61] Yiming Yang,et al. Deep Learning for Extreme Multi-label Text Classification , 2017, SIGIR.
[62] Zihan Zhang,et al. AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification , 2019, NeurIPS.
[63] Pascale Kuntz,et al. CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning , 2018, ICML.
[64] A. Zubiaga. Enhancing Navigation on Wikipedia with Social Tags , 2012, ArXiv.
[65] Carl E. Rasmussen,et al. Understanding Probabilistic Sparse Gaussian Process Approximations , 2016, NIPS.