Integrated CO2 Capture and Conversion into Valuable Hydrocarbons

Funding for this work was provided by King Abdullah University of Science and Technology (KAUST). This research used resources of the Supercomputing Laboratory at KAUST. The FAME-UHD project is financially supported by the French "Grand Emprunt" EquipEx (EcoX, ANR-10-EQPX-27-01), the CEA-CNRS CRG consortium and the INSU CNRS institute.

[1]  A. Gonzalez-Elipe,et al.  XPS study of the surface carbonation/ hydroxylation state of metal oxides , 1990 .

[2]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[3]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[4]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[5]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[6]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[7]  J. Klemeš,et al.  Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends , 2017 .

[8]  F. Kapteijn,et al.  Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts , 2015, Nature Communications.

[9]  A. Corma,et al.  Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins , 2012 .

[10]  Andrew A. Peterson,et al.  How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels , 2010 .

[11]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[12]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[13]  J. Gascón,et al.  Metal Organic Framework-Derived Iron Catalysts for the Direct Hydrogenation of CO2 to Short Chain Olefins , 2018, ACS Catalysis.

[14]  T. Riedel,et al.  Fischer–Tropsch on Iron with H2/CO and H2/CO2 as Synthesis Gases: The Episodes of Formation of the Fischer–Tropsch Regime and Construction of the Catalyst , 2003 .

[15]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[16]  Chunshan Song,et al.  Light olefin synthesis from CO2 hydrogenation over K-promoted Fe-Co bimetallic catalysts , 2015 .

[17]  Andrej Furlan,et al.  Structure and bonding in amorphous iron carbide thin films , 2015, Journal of Physics: Condensed Matter.

[18]  F. Kapteijn,et al.  Elucidating the Nature of Fe Species during Pyrolysis of the Fe-BTC MOF into Highly Active and Stable Fischer–Tropsch Catalysts , 2016 .

[19]  Snehal A. Patel,et al.  Fixed bed and slurry reactor studies of Fischer-Tropsch synthesis on precipitated iron catalyst , 1990 .

[20]  A. Shchukarev,et al.  XPS Study of group IA carbonates , 2004 .

[21]  J. Gascón,et al.  Heterogeneous Catalysis for the Valorization of CO2: Role of Bifunctional Processes in the Production of Chemicals , 2018, ACS Energy Letters.

[22]  F. Kapteijn,et al.  Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes , 2017, Chemical reviews.