LMI conditions for H∞ static output feedback control of discrete-time systems

This paper is concerned with the problems of H∞ static output feedback (SOF) control synthesis for discrete-time systems. New linear matrix inequality (LMI) characterizations are derived, which enable one SOF controller by using parameter-dependent Lyapunov function. The relationship between the proposed methods include and the existing ones are clarified, which shows that our new results include those results as special cases. Numerical examples are included for illustration.

[1]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[2]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  Wook Hyun Kwon,et al.  Sufficient LMI conditions for the H∞ output feedback stabilization of linear discrete-time systems , 2004, CDC.

[4]  José Claudio Geromel,et al.  Analysis and Synthesis of Robust Control Systems Using Linear Parameter Dependent Lyapunov Functions , 2006, IEEE Transactions on Automatic Control.

[5]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[6]  Uri Shaked,et al.  An LPD approach to robust H2 and H∞ static output-feedback design , 2003, IEEE Trans. Autom. Control..

[7]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[8]  Ian Postlethwaite,et al.  Static output feedback stabilisation with H∞ performance for a class of plants , 2001, Syst. Control. Lett..

[9]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.

[10]  Ji-Chang Lo,et al.  Robust H/sub /spl infin// nonlinear control via fuzzy static output feedback , 2003 .

[11]  Uri Shaked,et al.  Robust Hinfinity output-feedback control of linear discrete-time systems , 2005, Syst. Control. Lett..

[12]  James Lam,et al.  An augmented system approach to static output‐feedback stabilization with ℋ︁∞ performance for continuous‐time plants , 2009 .

[13]  Chang-Chieh Hang,et al.  Optimal Multivariable PID Control Based on LMI Approach , 2008 .

[14]  D. Ho,et al.  Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach , 2003 .

[15]  Massimiliano Mattei,et al.  Sufficient conditions for the synthesis ofH? fixed-order controllers , 2000 .

[16]  Wook Hyun Kwon,et al.  Sufficient LMI conditions for the H/sub /spl infin// output feedback stabilization of linear discrete-time systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[17]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..