Facile microemulsion synthesis of porous CuO nanosphere film and its application in lithium ion batteries

[1]  J. Tu,et al.  Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries , 2013 .

[2]  B. Geng,et al.  High electrochemical performance based on ultrathin porous CuO nanobelts grown on Cu substrate as integrated electrode. , 2013, Physical chemistry chemical physics : PCCP.

[3]  Chunsheng Wang,et al.  Uniform nano-Sn/C composite anodes for lithium ion batteries. , 2013, Nano letters.

[4]  Ling Huang,et al.  Nanoarchitectured Fe3O4 array electrode and its excellent lithium storage performance , 2012 .

[5]  P. Ajayan,et al.  3D nanoporous nanowire current collectors for thin film microbatteries. , 2012, Nano letters.

[6]  Xiaoping Shen,et al.  Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures. , 2012, ACS applied materials & interfaces.

[7]  S. Mann,et al.  Hierarchical Self‐assembly of Microscale Cog‐like Superstructures for Enhanced Performance in Lithium‐Ion Batteries , 2011 .

[8]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[9]  Yu Zhou,et al.  Enhanced high rate properties of ordered porous Cu2O film as anode for lithium ion batteries , 2010 .

[10]  Shuru Chen,et al.  One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance , 2009 .

[11]  S. Kodambaka,et al.  Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres. , 2009, ACS applied materials & interfaces.

[12]  P. Marcus,et al.  XPS, time-of-flight-SIMS and polarization modulation IRRAS study of Cr2O3 thin film materials as anode for lithium ion battery , 2009 .

[13]  J. Tu,et al.  Morphology effect on the electrochemical performance of NiO films as anodes for lithium ion batteries , 2009 .

[14]  H. Zeng,et al.  Hollowing Sn-doped TiO2 nanospheres via ostwald ripening. , 2007, Journal of the American Chemical Society.

[15]  Chun-hua Chen,et al.  Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries , 2007 .

[16]  Pengjian Zuo,et al.  Fabrication of CuO film with network-like architectures through solution-immersion and their application in lithium ion batteries , 2007 .

[17]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[18]  Changwen Hu,et al.  Microemulsion-mediated solvothermal synthesis of SrCO3 nanostructures. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[19]  P. Balaya,et al.  Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides , 2004 .

[20]  Xiaogang Wen,et al.  Controlled reactions on a copper surface: synthesis and characterization of nanostructured copper compound films. , 2003, Inorganic chemistry.

[21]  J. Tarascon,et al.  Metal oxides as negative electrode materials in Li-ion cells , 2002 .

[22]  J. Tarascon,et al.  On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential , 2002 .

[23]  J. Tarascon,et al.  The Electrochemical Reduction of Co3 O 4 in a Lithium Cell , 2002 .

[24]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[25]  John Klier,et al.  Properties and Applications of Microemulsions , 2000 .

[26]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[27]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[28]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[29]  J. Tarascon,et al.  The electrochemical reduction of Co3O4 in a lithium cell , 2002 .