Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws

Construction des schemas aux differences monotones precis du second ordre pour les lois de conservation hyperboliques et solution multigrille des equations discretes a etat stationnaire correspondantes

[1]  S. P. Spekreijse,et al.  Multigrid solution of the steady Euler equations , 1988 .

[2]  S. P. Spekreijse,et al.  Multiple grid and Osher''s scheme for the efficient solution of the steady Euler equations Applied N , 1986 .

[3]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[4]  W. A. Mulder,et al.  Implicit upwind methods for the Euler equations , 1983 .

[5]  G. D. van Albada,et al.  A comparative study of computational methods in cosmic gas dynamics , 1982 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[8]  S. Spekreijse Second order accurate upwind solutions of the 2D steady Euler equations by the use of a defect correction method , 1986 .

[9]  Bram van Leer,et al.  Upwind-difference methods for aerodynamic problems governed by the Euler equations , 1985 .

[10]  S. Osher,et al.  High resolution applications of the Osher upwind scheme for the Euler equations , 1983 .

[11]  Dennis C. Jespersen,et al.  Design and implementation of a multigrid code for the Euler equations , 1983 .

[12]  A. Brandt Guide to multigrid development , 1982 .

[13]  B. Vanleer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .