DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES

Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H$_2$-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492 c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model-dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.

[1]  Martin D. Weinberg,et al.  Computing the Bayes Factor from a Markov chain Monte Carlo Simulation of the Posterior Distribution , 2009, 0911.1777.

[2]  Walter R. Gilks,et al.  Hypothesis testing and model selection , 1995 .

[3]  Mark A. Girolami,et al.  Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..

[4]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[5]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[6]  I. Kamp,et al.  Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets , 2014, Life.

[7]  A. Burrows,et al.  THE DIRECT DETECTABILITY OF GIANT EXOPLANETS IN THE OPTICAL , 2015, 1505.07832.

[8]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[9]  Joanna K. Barstow,et al.  CLOUDS ON THE HOT JUPITER HD189733b: CONSTRAINTS FROM THE REFLECTION SPECTRUM , 2014, 1403.6664.

[10]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[11]  Olivier Guyon,et al.  Science yield estimate with the Wide-Field Infrared Survey Telescope coronagraph , 2016 .

[12]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[13]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[14]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[15]  H. Horak,et al.  Calculations of Planetary Reflection. , 1965 .

[16]  T. Boyajian,et al.  STELLAR ACTIVITY AND EXCLUSION OF THE OUTER PLANET IN THE HD 99492 SYSTEM , 2016, 1603.00487.

[17]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[18]  A. Burrows Scientific Return of Coronagraphic Exoplanet Imaging and Spectroscopy Using WFIRST , 2014, 1412.6097.

[19]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[20]  Tyler D. Robinson,et al.  Characterizing Rocky and Gaseous Exoplanets with 2 m Class Space-based Coronagraphs , 2015, 1507.00777.

[21]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[22]  Adrian E. Raftery,et al.  Hypothesis testing and model selection , 1996 .

[23]  W. Weaver,et al.  Two-Stream Approximations to Radiative Transfer in Planetary Atmospheres: A Unified Description of Existing Methods and a New Improvement , 1980 .

[24]  R. Trotta Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.

[25]  J. Dunkley,et al.  Comparison of sampling techniques for Bayesian parameter estimation , 2013, 1308.2675.

[26]  R. Trotta Bayes in the sky: Bayesian inference and model selection in cosmology , 2008, 0803.4089.

[27]  M. Hobson,et al.  Efficient Bayesian inference for multimodal problems in cosmology , 2007, astro-ph/0701867.

[28]  E. Karkoschka Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum , 1994 .

[29]  Reanalysis of Uranus' cloud scattering properties from IRTF/SpeX observations using a self-consistent scattering cloud retrieval scheme , 2015, 1601.02814.

[30]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[31]  Adam Burrows,et al.  Spectra and Diagnostics for the Direct Detection of Wide-Separation Extrasolar Giant Planets , 2004, astro-ph/0401522.

[32]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[33]  J. Lunine,et al.  Reflected Spectra and Albedos of Extrasolar Giant Planets. I. Clear and Cloudy Atmospheres , 1998, astro-ph/9810073.

[34]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[35]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[36]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[37]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[38]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[39]  Y. Kasaba,et al.  Retrieval of jovian cloud structure from the Cassini ISS limb-darkening data: I. Continuum scattering phase functions for cloud and haze in the South Tropical Zone , 2013 .

[40]  M. J. Bayarri,et al.  Calibration of ρ Values for Testing Precise Null Hypotheses , 2001 .

[41]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[42]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[43]  J. Hansen,et al.  Jupiter's Atmospheric Composition and Cloud Structure Deduced from Absorption Bands in Reflected Sunlight , 1978 .

[44]  H. Horak Diffuse Reflection by Planetary Atmospheres. , 1950 .

[45]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[46]  M. Newton,et al.  Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity , 2006 .

[47]  M. Marley,et al.  A Quick Study of the Characterization of Radial Velocity Giant Planets in Reflected Light by Forward and Inverse Modeling , 2014, 1412.8440.

[48]  G. E. Wood,et al.  Radio Science with Voyager 2 at Saturn: Atmosphere and Ionosphere and the Masses of Mimas, Tethys, and Iapetus , 1982, Science.

[49]  P. Gierasch,et al.  Color and the Vertical Structure in Jupiter's Belts, Zones, and Weather Systems , 2001 .

[50]  D. Lauretta,et al.  Making the Earth: Combining Dynamics and Chemistry in the Solar System , 2009, 0911.0426.

[51]  P. Gierasch,et al.  Saturn's cloud structure inferred from Cassini ISS , 2011 .

[52]  T. Littenberg,et al.  Tests of Bayesian model selection techniques for gravitational wave astronomy , 2007, 0704.1808.