Transport and Trafficking in Plasmodium-Infected Red Cells

[1]  M. Wahlgren,et al.  Small, Clonally Variant Antigens Expressed on the Surface of the Plasmodium falciparum–Infected Erythrocyte Are Encoded by the rif Gene Family and Are the Target of Human Immune Responses , 1999, The Journal of experimental medicine.

[2]  B. Gamain,et al.  Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  A. Alcina,et al.  The cloning and expression of Pfacs1, a Plasmodium falciparum fatty acyl coenzyme A synthetase-1 targeted to the host erythrocyte cytoplasm. , 1999, Journal of molecular biology.

[4]  S. Kyes,et al.  Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Haldar,et al.  Artemisinin and its derivatives are transported by a vacuolar-network of Plasmodium falciparum and their anti-malarial activities are additive with toxic sphingolipid analogues that block the network. , 1999, Molecular and biochemical parasitology.

[6]  A. Cowman,et al.  The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Roos,et al.  Transport and trafficking: Toxoplasma as a model for Plasmodium. , 1999, Novartis Foundation symposium.

[8]  Zbynek Bozdech,et al.  The human malaria parasite Plasmodium falciparum exports the ATP-binding cassette protein PFGCN20 to membrane structures in the host red blood cell. , 1998, Molecular and biochemical parasitology.

[9]  D. Roos,et al.  Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Kirk,et al.  Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei. , 1998, The Biochemical journal.

[11]  K. Kirk,et al.  Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum-infected human erythrocytes via a parasite-induced pathway. , 1998, Molecular and biochemical parasitology.

[12]  K. Haldar Intracellular trafficking in Plasmodium-infected erythrocytes. , 1998, Current opinion in microbiology.

[13]  K. Kirk,et al.  Transport and Metabolism of the Essential Vitamin Pantothenic Acid in Human Erythrocytes Infected with the Malaria ParasitePlasmodium falciparum * , 1998, The Journal of Biological Chemistry.

[14]  M. Foley,et al.  Identification of an endoplasmic reticulum-resident calcium-binding protein with multiple EF-hand motifs in asexual stages of Plasmodium falciparum. , 1997 .

[15]  J. Adams,et al.  Erythrocyte binding protein homologues of rodent malaria parasites. , 1997, Molecular and biochemical parasitology.

[16]  Yang,et al.  P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1 , 1997, Nature.

[17]  K. Lingelbach Protein trafficking in the Plasmodium-falciparum-infected erythrocyte--from models to mechanisms. , 1997, Annals of tropical medicine and parasitology.

[18]  P. Rathod,et al.  A membrane network for nutrient import in red cells infected with the malaria parasite. , 1997, Science.

[19]  Mark E. Wickham,et al.  Targeted Gene Disruption Shows That Knobs Enable Malaria-Infected Red Cells to Cytoadhere under Physiological Shear Stress , 1997, Cell.

[20]  R. Rosenberg,et al.  Pore size of the malaria parasite's nutrient channel. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Chakrabarti,et al.  Cloning and characterization of Plasmodium falciparum ADP-ribosylation factor and factor-like genes. , 1997, Molecular and biochemical parasitology.

[22]  S. Bhakdi,et al.  Permeabilization of the erythrocyte membrane with streptolysin O allows access to the vacuolar membrane of Plasmodium falciparum and a molecular analysis of membrane topology. , 1997, Molecular and biochemical parasitology.

[23]  A. Saul,et al.  Macromolecular transport in malaria--does the duct exist? , 1997, European journal of cell biology.

[24]  K. Haldar,et al.  Identification and localization of rab6, separation of rab6 from ERD2 and implications for an 'unstacked' Golgi, in Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[25]  A. Holder,et al.  Isolation, expression and characterization of the gene for an ADP-ribosylation factor from the human malaria parasite, Plasmodium falciparum. , 1996, European journal of biochemistry.

[26]  D. Chakrabarti,et al.  Identification of a family of Rab G-proteins in Plasmodium falciparum and a detailed characterisation of pfrab6. , 1996, Molecular and biochemical parasitology.

[27]  S. Bhakdi,et al.  Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O. , 1996, The Biochemical journal.

[28]  T. Wellems,et al.  Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[29]  K. Kirk,et al.  In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum-infected erythrocytes: effects of arylaminobenzoates. , 1995, The Biochemical journal.

[30]  G. Warren Intracellular membrane morphology. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  K. Haldar,et al.  Sphingolipid synthesis as a target for chemotherapy against malaria parasites. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Banting,et al.  A minimalist view of the secretory pathway in Plasmodium falciparum. , 1995, Trends in cell biology.

[33]  Theodore F. Taraschi,et al.  Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes , 1995, Cell.

[34]  Joseph D. Smith,et al.  Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes , 1995, Cell.

[35]  X. Su,et al.  The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes , 1995, Cell.

[36]  S. Schwartzbach,et al.  The Polyprotein Precursor to the Euglena Light-harvesting Chlorophyll a/b-binding Protein Is Transported to the Golgi Apparatus Prior to Chloroplast Import and Polyprotein Processing (*) , 1995, The Journal of Biological Chemistry.

[37]  D. Ferguson,et al.  Parasite-regulated membrane transport processes and metabolic control in malaria-infected erythrocytes. , 1995, The Biochemical journal.

[38]  P. Rathod,et al.  Selection and characterization of 5-fluoroorotate-resistant Plasmodium falciparum , 1994, Antimicrobial Agents and Chemotherapy.

[39]  J. Mazié,et al.  Plasmodium falciparum: the Pf332 antigen is secreted from the parasite by a brefeldin A-dependent pathway and is translocated to the erythrocyte membrane via the Maurer's clefts. , 1994, Experimental parasitology.

[40]  C. Chitnis,et al.  Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion , 1994, The Journal of experimental medicine.

[41]  A. Holder,et al.  Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein , 1994, The Journal of experimental medicine.

[42]  C. Chitnis,et al.  Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. , 1994, Science.

[43]  D. Mattei,et al.  Brefeldin A inhibits transport of the glycophorin-binding protein from Plasmodium falciparum into the host erythrocyte. , 1994, The Biochemical journal.

[44]  C. Newbold,et al.  Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. , 1994, The Journal of biological chemistry.

[45]  K. Haldar,et al.  Plasmodium falciparum exports the Golgi marker sphingomyelin synthase into a tubovesicular network in the cytoplasm of mature erythrocytes , 1994, The Journal of cell biology.

[46]  K. Joiner,et al.  The parasitophorous vacuole membrane surrounding intracellular Toxoplasma gondii functions as a molecular sieve. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  K. Haldar Ducts, channels and transporters in Plasmodium-infected erythrocytes. , 1994, Parasitology today.

[48]  S. Meshnick,et al.  The interaction of artemisinin with malarial hemozoin. , 1994, Molecular and biochemical parasitology.

[49]  K. Haldar,et al.  Identification and localization of ERD2 in the malaria parasite Plasmodium falciparum: separation from sites of sphingomyelin synthesis and implications for organization of the Golgi. , 1993, The EMBO journal.

[50]  K. Haldar,et al.  Export of parasite proteins to the erythrocyte in Plasmodium falciparum-infected cells. , 1993, Seminars in cell biology.

[51]  E. Mccleskey,et al.  A nutrient-permeable channel on the intraerythrocytic malaria parasite , 1993, Nature.

[52]  K. Haldar,et al.  Secretory transport in Plasmodium. , 1993, Parasitology today.

[53]  D. Ferguson,et al.  Secretory processes in Plasmodium. , 1993, Parasitology today.

[54]  R. J. Howard,et al.  Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways , 1992, The Journal of cell biology.

[55]  K. Haldar,et al.  Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of Plasmodium falciparum. , 1992, Molecular and biochemical parasitology.

[56]  S. Meshnick,et al.  Artemisinin (qinghaosu): the role of intracellular hemin in its mechanism of antimalarial action. , 1991, Molecular and biochemical parasitology.

[57]  K. Haldar,et al.  The accumulation and metabolism of a fluorescent ceramide derivative in Plasmodium falciparum-infected erythrocytes. , 1991, Molecular and biochemical parasitology.

[58]  R. J. Howard,et al.  Direct access to serum macromolecules by intraerythrocytic malaria parasites , 1991, Nature.

[59]  H. Arnold,et al.  An exported protein of Plasmodium falciparum is synthesized as an integral membrane protein. , 1991, Molecular and biochemical parasitology.

[60]  P. Rathod,et al.  Synthesis and antiproliferative activity of threo-5-fluoro-L-dihydroorotate. , 1990, The Journal of biological chemistry.

[61]  N. Mohandas,et al.  Membrane assembly and remodeling during reticulocyte maturation , 1989 .

[62]  R. Carter,et al.  Plasmodium falciparum gene encoding a protein similar to the 78-kDa rat glucose-regulated stress protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[63]  H. Vial,et al.  Correlation of the efficiency of fatty acid derivatives in suppressing Plasmodium falciparum growth in culture with their inhibitory effect on acyl-CoA synthetase activity. , 1988, Molecular and biochemical parasitology.

[64]  D. Warhurst,et al.  Uptake of [3H] dihydroartemisinine by erythrocytes infected with Plasmodium falciparum in vitro. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[65]  Guoqiao Li,et al.  ANTIMALARIAL ACTIVITY OF MEFLOQUINE AND QINGHAOSU , 1982, The Lancet.

[66]  W. Trager,et al.  Fine structure of human malaria in vitro. , 1978, The Journal of protozoology.