A Complex Version of the Cahn-Hilliard Equation for Grayscale Image Inpainting

Our aim in this article is to propose a generalization of the Bertozzi--Esedoglu--Gillette--Cahn--Hilliard equation, introduced for binary image inpainting, for grayscale image inpainting. In particular, we consider the solution to the corresponding Cahn--Hilliard inpainting model as a complex valued function. We are interested in the study of the well-posedness and of the asymptotic behavior, in terms of finite-dimensional attractors, of the associated dynamical system. We have to face two major difficulties here. The first one comes from the fact that we no longer have the conservation of mass, i.e., of the spatial average of the order parameter $u$, contrary to the classical Cahn--Hilliard equation. The second one is due to the estimates on the nonlinear terms, combined with the fact that the order parameter $u$ is complex valued. We finally give numerical simulations which confirm and extend previous ones on the efficiency of the binary model.

[1]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[2]  Morgan Pierre,et al.  Stable discretizations of the Cahn-Hilliard-Gurtin equations , 2008 .

[3]  Martin Stoll,et al.  Fast Solvers for Cahn-Hilliard Inpainting , 2014, SIAM J. Imaging Sci..

[4]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[5]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[7]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[8]  Sergey Zelik,et al.  On a generalized Cahn-Hilliard equation with biological applications , 2014 .

[9]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[10]  Alain Miranville,et al.  A Cahn–Hilliard System with a Fidelity Term for Color Image Inpainting , 2015, Journal of Mathematical Imaging and Vision.

[11]  I. Klapper,et al.  Role of cohesion in the material description of biofilms. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Sergey Zelik,et al.  Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains , 2008 .

[13]  Hussein Fakih A Cahn-Hilliard equation with a proliferation term for biological and chemical applications , 2015, Asymptot. Anal..

[14]  Andrea L. Bertozzi,et al.  Wavelet analogue of the Ginzburg–Landau energy and its Γ-convergence , 2010 .

[15]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[16]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[17]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[18]  Andrea L. Bertozzi,et al.  Analysis of the Wavelet Ginzburg-Landau Energy in Image Applications with Edges , 2013, SIAM J. Imaging Sci..

[19]  S. Bankoff,et al.  Long-scale evolution of thin liquid films , 1997 .

[20]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[21]  Johan van de Koppel,et al.  Phase separation explains a new class of self-organized spatial patterns in ecological systems , 2013, Proceedings of the National Academy of Sciences.

[22]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[23]  Paul C. Fife,et al.  Models for phase separation and their mathematics. , 2000 .

[24]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .

[25]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[26]  Anil C. Kokaram,et al.  Motion picture restoration - digital algorithms for artefact suppression in degraded motion picture film and video , 2001 .

[27]  John B. Greer,et al.  Traveling Wave Solutions of Fourth Order PDEs for Image Processing , 2004, SIAM J. Math. Anal..

[28]  Lin He,et al.  Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images , 2009, SIAM J. Imaging Sci..

[29]  Maurizio Grasselli,et al.  Convective nonlocal Cahn-Hilliard equations with reaction terms , 2014 .

[30]  Alain Miranville,et al.  On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard Equation with Logarithmic Nonlinear Terms , 2015, SIAM J. Imaging Sci..

[31]  Martin Stoll,et al.  A Fractional Inpainting Model Based on the Vector-Valued Cahn-Hilliard Equation , 2015, SIAM J. Imaging Sci..

[32]  Otmar Scherzer,et al.  Using the Complex Ginzburg-Landau Equation for Digital Inpainting in 2D and 3D , 2003, Scale-Space.

[33]  Selim Esedoglu,et al.  Segmentation with Depth but Without Detecting Junctions , 2004, Journal of Mathematical Imaging and Vision.

[34]  Alain Miranville,et al.  Finite-dimensional attractors for the Bertozzi--Esedoglu--Gillette--Cahn--Hilliardequation in image inpainting , 2015 .

[35]  Morgan Pierre,et al.  A SPLITTING METHOD FOR THE CAHN–HILLIARD EQUATION WITH INERTIAL TERM , 2010 .

[36]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[37]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[38]  S. Tremaine,et al.  On the Origin of Irregular Structure in Saturn's Rings , 2002, astro-ph/0211149.

[39]  A. Bertozzi,et al.  $H^1$ Solutions of a class of fourth order nonlinear equations for image processing , 2003 .

[40]  Sergey Zelik,et al.  Exponential attractors for a nonlinear reaction-diffusion system in ? , 2000 .

[41]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[42]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[43]  Alain Miranville,et al.  A Generalized Cahn-Hilliard Equation with Logarithmic Potentials , 2015 .

[44]  Stefano Finzi Vita,et al.  Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .

[45]  James D. Murray,et al.  A generalized diffusion model for growth and dispersal in a population , 1981 .

[46]  David King The Commissar vanishes : the falsification of photographs and art in Stalin's Russia : photographs and graphics from the David King collection , 1997 .

[47]  Sergey Zelik,et al.  The Cahn-Hilliard Equation with Logarithmic Potentials , 2011 .

[48]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[49]  A. Eden,et al.  Exponential Attractors for Dissipative Evolution Equations , 1995 .

[50]  Alain Miranville,et al.  Asymptotic behaviour of a generalized Cahn–Hilliard equation with a proliferation term , 2013 .

[51]  Morgan Pierre,et al.  A NUMERICAL ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS , 2010 .

[52]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[53]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[54]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[55]  Gilberte Émile-Mâle The restorer's handbook of easel painting , 1976 .

[56]  Jianhong Shen,et al.  Inpainting and the Fundamental Problem of Image Processing , 2002 .

[57]  Sergey Zelik,et al.  Exponential attractors for a singularly perturbed Cahn‐Hilliard system , 2004 .

[58]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[59]  Roger Temam,et al.  Some Global Dynamical Properties of a Class of Pattern Formation Equations , 1989 .

[60]  Edgar Knobloch,et al.  Thin liquid films on a slightly inclined heated plate , 2004 .

[61]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[62]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.