Coupled Generalized Nonlinear Stokes Flow with Flow through a Porous Medium

In this article, we analyze the flow of a fluid through a coupled Stokes-Darcy domain. The fluid in each domain is non-Newtonian, modeled by the generalized nonlinear Stokes equation in the free flow region and the generalized nonlinear Darcy equation in the porous medium. A flow rate is specified along the inflow portion of the free flow boundary. We show existence and uniqueness of a variational solution to the problem. We propose and analyze an approximation algorithm and establish a priori error estimates for the approximation.

[1]  D. Sandri A posteriori estimators for mixed finite element approximations of a fluid obeying the power law , 1998 .

[2]  P. M. J. Tardy,et al.  Models for flow of non-Newtonian and complex fluids through porous media , 2002 .

[3]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[4]  M. Gunzburger,et al.  Treating inhomogeneous essential boundary conditions in finite element methods and the calculation of boundary stresses , 1992 .

[5]  Vincent J. Ervin,et al.  Numerical Approximation of a Quasi-Newtonian Stokes Flow Problem with Defective Boundary Conditions , 2007, SIAM J. Numer. Anal..

[6]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[7]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[8]  V. Nassehi,et al.  Numerical Analysis of Coupled Stokes/Darcy Flows in Industrial Filtrations , 2006 .

[9]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[10]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[11]  Graham F. Carey,et al.  Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates , 2003 .

[12]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[13]  Jacques Baranger,et al.  Numerical analysis of a three-fields model for a quasi-Newtonian flow , 1993 .

[14]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[15]  Timothy Nigel Phillips,et al.  Residual a posteriori error estimator for a three-field model of a non-linear generalized Stokes problem , 2006 .

[16]  D. Joseph,et al.  Boundary conditions at a naturally permeable wall , 1967, Journal of Fluid Mechanics.

[17]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[18]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[19]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  T N Phillips,et al.  Contemporary Topics in Computational Rheology , 2002 .

[22]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[23]  G. Folland Introduction to Partial Differential Equations , 1976 .

[24]  P. Saffman On the Boundary Condition at the Surface of a Porous Medium , 1971 .

[25]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[26]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[27]  R. Verfürth Finite element approximation on incompressible Navier-Stokes equations with slip boundary condition , 1987 .

[28]  H. Manouzi,et al.  Mixed finite element analysis of a non‐linear three‐fields Stokes model , 2001 .

[29]  Karsten Pruess,et al.  A numerical method for simulating non-Newtonian fluid flow and displacement in porous media , 1998, Advances in Water Resources.

[30]  Martin J Blunt,et al.  Predictive network modeling of single-phase non-Newtonian flow in porous media. , 2003, Journal of colloid and interface science.