On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices

AbstractThe aim of the paper is to obtain some theoretical and numerical properties of Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices (PRM). In the case of 3 ×  3 PRM, a differentiable one-to-one correspondence is given between Saaty’s inconsistency ratio and Koczkodaj’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty’s and Koczkodaj’s inconsistencies for 4  ×  4 pairwise comparison matrices, the average value of the maximal eigenvalues of randomly generated n ×  n PRM is formulated, the elements aij (i < j) of which were randomly chosen from the ratio scale $$\dfrac{1}{M}, \dfrac{1}{M-1}, \ldots , \dfrac{1}{2}, 1, 2, \ldots , M - 1, M,$$with equal probability 1/(2M − 1) and aji is defined as 1/aij. By statistical analysis, the empirical distributions of the maximal eigenvalues of the PRM depending on the dimension number are obtained. As the dimension number increases, the shape of distributions gets similar to that of the normal ones. Finally, the inconsistency of asymmetry is dealt with, showing a different type of inconsistency.

[1]  José María Moreno-Jiménez,et al.  The geometric consistency index: Approximated thresholds , 2003, Eur. J. Oper. Res..

[2]  W. W. Koczkodaj A new definition of consistency of pairwise comparisons , 1993 .

[3]  L. Thurstone The method of paired comparisons for social values , 1927 .

[4]  H. Monsuur An intrinsic consistency threshold for reciprocal matrices , 1997 .

[5]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[6]  Luis G. Vargas Reciprocal matrices with random coefficients , 1982 .

[7]  William E. Stein,et al.  The harmonic consistency index for the analytic hierarchy process , 2007, Eur. J. Oper. Res..

[8]  R. Kalaba,et al.  A comparison of two methods for determining the weights of belonging to fuzzy sets , 1979 .

[9]  H. A. Donegan,et al.  A statistical approach to consistency in AHP , 1993 .

[10]  Hong Ling,et al.  A Note on the Computation of the Mean Random Consistency Index of the Analytic Hierarchy Process (Ahp) , 1998 .

[11]  Bodo Glaser Fundamentals of Decision Making , 2002 .

[12]  Qiwen Wang,et al.  An Alternate Measure of Consistency , 1989 .

[13]  Saul I. Gass,et al.  Singular value decomposition in AHP , 2004, Eur. J. Oper. Res..

[14]  Waldemar W. Koczkodaj,et al.  Generalization of a New Definition of Consistency for Pairwise Comparisons , 1994, Inf. Process. Lett..

[15]  M. T. Lamata,et al.  A new measure of consistency for positive reciprocal matrices , 2003 .

[16]  Catherine K. Murphy,et al.  LIMITS ON THE ANALYTIC HIERARCHY PROCESS FROM ITS CONSISTENCY INDEX , 1993 .

[17]  E. F. Lane,et al.  A CONSISTENCY TEST FOR AHP DECISION MAKERS , 1989 .

[18]  Saul I. Gass,et al.  Characteristics of positive reciprocal matrices in the analytic hierarchy process , 2002, J. Oper. Res. Soc..

[19]  Charles R. Johnson,et al.  Right-left asymmetry in an eigenvector ranking procedure , 1979 .

[20]  G. Crawford,et al.  A note on the analysis of subjective judgment matrices , 1985 .

[21]  Waldemar W. Koczkodaj,et al.  Using consistency-driven pairwise comparisons in knowledge-based systems , 1997, CIKM '97.

[22]  T. Saaty,et al.  The Analytic Hierarchy Process , 1985 .

[23]  F. J. Dodd,et al.  Inverse inconsistency in analytic hierarchies , 1995 .

[24]  E. Thorndike A constant error in psychological ratings. , 1920 .

[25]  E. Forman Random indices for incomplete pairwise comparison matrices , 1990 .