An introduction to pspatreg. A new R package for semiparametric spatial autoregressive analysis

. This article introduces a new R package ( pspatreg ) for the estimation of semiparametric spatial autoregressive models. pspatreg fits penalized spline semiparametric spatial autoregressive models via Restricted Maximum Likelihood or Maximum Likelihood. These models are very flexible as they make it possible to simultaneously control for spatial dependence, nonlinearities in the functional form, and spatio-temporal heterogeneity. The package also allows to estimate parametric spatial autoregressive models for both cross-sectional and panel data (with fixed effects), thus avoiding the use of different libraries. The official demos, vignettes, and tutorials of the package are distributed either in CRAN or GitHub. This article illustrates the potentials of the package by applying it to cross-sectional data.

[1]  R. Bivand R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data , 2022, Geographical Analysis.

[2]  Roger Bivand,et al.  A Review of Software for Spatial Econometrics in R , 2021 .

[3]  Román Mínguez,et al.  ML versus IV estimates of spatial SUR models: evidence from the case of Airbnb in Madrid urban area , 2020, The Annals of Regional Science.

[4]  María Durbán,et al.  An alternative semiparametric model for spatial panel data , 2019, Statistical Methods & Applications.

[5]  Tadao Hoshino Semiparametric Spatial Autoregressive Models With Endogenous Regressors: With an Application to Crime Data , 2018 .

[6]  Lung-fei Lee,et al.  A spatial panel data model with time varying endogenous weights matrices and common factors , 2017, Regional Science and Urban Economics.

[7]  J. Elhorst,et al.  A regional unemployment model simultaneously accounting for serial dynamics, spatial dependence and common factors , 2016 .

[8]  Paul H. C. Eilers,et al.  Twenty years of P-splines , 2015 .

[9]  G. Chi Applied Spatial Data Analysis with R , 2015 .

[10]  M. Durbán,et al.  Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities , 2014 .

[11]  Kunpeng Li,et al.  Spatial Panel Data Models with Common Shocks , 2013 .

[12]  Paul H. C. Eilers,et al.  Efficient two-dimensional smoothing with PP-spline ANOVA mixed models and nested bases , 2013, Comput. Stat. Data Anal..

[13]  D. McMillen,et al.  Perspectives on Spatial Econometrics: Linear Smoothing with Structured Models , 2012 .

[14]  Gianfranco Piras,et al.  splm: Spatial Panel Data Models in R , 2012 .

[15]  M. D. Ugarte,et al.  Introduction to Spatial Econometrics , 2011 .

[16]  Gianfranco Piras,et al.  sphet: Spatial Models with Heteroskedastic Innovations in R , 2010 .

[17]  Edzer J. Pebesma,et al.  Applied Spatial Data Analysis with R - Second Edition , 2008, Use R!.

[18]  Elisa Tosetti,et al.  Large Panels with Common Factors and Spatial Correlations , 2007, SSRN Electronic Journal.

[19]  Daniel P. McMillen,et al.  Spatial Autocorrelation Or Model Misspecification? , 2003 .

[20]  Preliminary version prepared for the Econometric Society World Meetings , 2000 .

[21]  Sebastian Juhl spfilteR: An R package for Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models , 2021, R J..

[22]  M. Hashem Pesaran,et al.  A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence , 2016 .

[23]  J. P. Elhorst,et al.  Spatial econometrics: from cross-sectional data to spatial panels , 2014 .

[24]  Román Mínguez,et al.  SAR models with nonparametric spatial trends . A P-spline approach , 2012 .