Distance transforms: Academics versus industry

In image and video analysis, distance transformations (DT) are frequently used. They provide a distance image (DI) of background pixels to the nearest object pixel. DT touches upon the core of many applications; consequently, not only science but also industry has conducted a significant body of work in this field. However, in a vast majority of the cases this has not been published in major scientific outlets but has been filed as a patent application. This article provides a brief introduction into DT, including a specification of a few of the most prominent algorithms in the field. Next, a few interesting algorithms from the last decade are discussed. A benchmark including eight DT algorithms (i.e., city block, Danielsson’s algorithm, chamfer 3-4, hexadecagonal region growing, a recent claimed true Euclidean DT, and three exact Euclidean DT) has been executed, which illustrates the intriguing complexity of DT in terms of precision and computational complexity. Subsequently, a selection of key patent applications are discussed that have emerged in this field, including their scientific merit and areas of application. Finally, this article’s findings are summarized and discussed, with an emphasis on both the common ground of scientific articles and patent applications as well as the added value they can have to each other.

[1]  Frank Y. Shih,et al.  Fast Euclidean distance transformation in two scans using a 3 × 3 neighborhood , 2004, Comput. Vis. Image Underst..

[2]  A. ROSENFELD,et al.  Distance functions on digital pictures , 1968, Pattern Recognit..

[3]  Luciano da Fontoura Costa,et al.  A parallel implementation of exact Euclidean distance transform based on exact dilations , 2004, Microprocess. Microsystems.

[4]  Yves Lucet New sequential exact Euclidean distance transform algorithms based on convex analysis , 2009, Image Vis. Comput..

[5]  P. Danielsson Euclidean distance mapping , 1980 .

[6]  Piet W. Verbeek,et al.  Shading from shape, the eikonal equation solved by grey-weighted distance transform , 1990, Pattern Recognit. Lett..

[7]  Hugues Talbot,et al.  Directional Morphological Filtering , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  G. Borgefors Distance transformations in arbitrary dimensions , 1984 .

[9]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[10]  András Hajdu,et al.  Approximating the Euclidean distance using non-periodic neighbourhood sequences , 2004, Discret. Math..

[11]  Jadwiga Rogowska,et al.  Overview and fundamentals of medical image segmentation , 2000 .

[12]  Azriel Rosenfeld Some notes on digital triangles , 1983, Pattern Recognit. Lett..

[13]  Takeo Kanade,et al.  Intelligent Autonomous Systems , 1991, Robotics Auton. Syst..

[14]  David Coeurjolly,et al.  Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Laure Tougne,et al.  Separable algorithms for distance transformations on irregular grids , 2011, Pattern Recognit. Lett..

[16]  Rocio Gonzalez-Diaz,et al.  Discrete Geometry for Computer Imagery , 2013, Lecture Notes in Computer Science.

[17]  Ling Chen,et al.  An Efficient Algorithm for Complete Euclidean Distance Transform on Mesh-Connected SIMD , 1995, Parallel Comput..

[18]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[19]  Fatih Murat Porikli,et al.  Fast distance transform computation using dual scan line propagation , 2007, Electronic Imaging.

[20]  Yueting Zhuang,et al.  Interactive high-dimensional index for large Chinese calligraphic character databases , 2007, TALIP.

[21]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jarmo Takala,et al.  Distance Transform Algorithm for Bit-Serial SIMD Architectures , 1999, Comput. Vis. Image Underst..

[23]  Jan Cornelis,et al.  Segmentation of medical images , 1993, Image Vis. Comput..

[24]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[25]  Erlend Hodneland,et al.  Segmentation of Digital Images , 2003 .

[26]  Shi-Jinn Horng,et al.  Parallel Computation of the Euclidean Distance Transform on the Mesh of Trees and the Hypercube Computer , 1997, Comput. Vis. Image Underst..

[27]  Egon L. van den Broek,et al.  Fast exact Euclidean distance (FEED) transformation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[28]  Luciano da Fontoura Costa,et al.  Multiscale skeletons by image foresting transform and its application to neuromorphometry , 2002, Pattern Recognit..

[29]  Jun-ichiro Toriwaki,et al.  New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..

[30]  Hiromasa Suzuki,et al.  Sparse grid distance transforms , 2010, Graph. Model..

[31]  Gunilla Borgefors,et al.  Distance transformations on hexagonal grids , 1989, Pattern Recognit. Lett..

[32]  아리사 후지오카,et al.  Method and apparatus for obtaining an object image and distance data of a moving object , 1988 .

[33]  A. Dempster,et al.  Modification on distance transform to avoid over-segmentation and under-segmentation , 2002, International Symposium on VIPromCom Video/Image Processing and Multimedia Communications.

[34]  Josef Kittler,et al.  Region growing: a new approach , 1998, IEEE Trans. Image Process..

[35]  Zenon Kulpa,et al.  Algorithms for circular propagation in discrete images , 1983, Comput. Vis. Graph. Image Process..

[36]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Benoit M. Macq,et al.  Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..

[38]  Egon L. van den Broek,et al.  Video surveillance using distance maps , 2006, Electronic Imaging.

[39]  Olivier Cuisenaire Locally adaptable mathematical morphology using distance transformations , 2006, Pattern Recognit..

[40]  András Hajdu Geometry of neighbourhood sequences , 2003, Pattern Recognit. Lett..

[41]  I. Nyström,et al.  Special Issue on Discrete Geometry and Computer Imagery , 2002 .

[42]  Egon L. van den Broek,et al.  Modeling human color categorization , 2008, Pattern Recognit. Lett..

[43]  Yi Lu,et al.  Character segmentation in handwritten words - An overview , 1996, Pattern Recognit..

[44]  Jaap van Pelt,et al.  A shape analysis framework for neuromorphometry , 2002, Network.

[45]  Frank Y. Shih,et al.  Size-invariant four-scan Euclidean distance transformation , 1998, Pattern Recognit..

[46]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Mark W. Jones,et al.  Vector-City Vector Distance Transform , 2001, Comput. Vis. Image Underst..

[48]  Antoine Vacavant,et al.  Fast distance transformation on irregular two-dimensional grids , 2010, Pattern Recognit..

[49]  Christoph Rasche,et al.  An Approach to the Parameterization of Structure for Fast Categorization , 2010, International Journal of Computer Vision.

[50]  Theo E. Schouten,et al.  Timed fast exact Euclidean distance (tFEED) maps , 2005, IS&T/SPIE Electronic Imaging.

[51]  Michael H. F. Wilkinson,et al.  A Comparison of Algorithms for Connected Set Openings and Closings , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Alexander Zelinsky,et al.  A Mobile Robot Navigation Exploration Algorithm , 1992 .

[53]  Olivier Cuisenaire,et al.  Region Growing Euclidean Distance Transforms , 1997, ICIAP.

[54]  Benjamin B. Kimia,et al.  Symmetry Maps of Free-Form Curve Segments via Wave Propagation , 2004, International Journal of Computer Vision.

[55]  Azriel Rosenfeld,et al.  Digital geometry - geometric methods for digital picture analysis , 2004 .

[56]  Punam K. Saha,et al.  Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform , 2004, IEEE Transactions on Medical Imaging.

[57]  Luciano da Fontoura Costa,et al.  2D Euclidean distance transform algorithms: A comparative survey , 2008, CSUR.

[58]  Zezhi Chen,et al.  Video Object Tracking Based on a Chamfer Distance Transform , 2007, 2007 IEEE International Conference on Image Processing.

[59]  Roberto Cipolla,et al.  Skeletonization using an extended Euclidean distance transform , 1995, Image Vis. Comput..

[60]  Weiguang Guan,et al.  A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Egon L. van den Broek,et al.  Modeling Internal Radiation Therapy , 2011, BIOINFORMATICS.

[62]  Theo E. Schouten,et al.  Three-dimensional fast exact Euclidean distance (3D-FEED) maps , 2006, Electronic Imaging.

[63]  H. Kooy,et al.  Automatic three-dimensional correlation of CT-CT, CT-MRI, and CT-SPECT using chamfer matching. , 1994, Medical physics.

[64]  Alfred M. Bruckstein,et al.  Multivalued distance maps for motion planning on surfaces with moving obstacles , 1998, IEEE Trans. Robotics Autom..

[65]  Azriel Rosenfeld,et al.  Sequential Operations in Digital Picture Processing , 1966, JACM.

[66]  Th.E. Schouten,et al.  Weighted Distance Mapping (WDM) , 2005 .

[67]  Mingli Chen,et al.  Efficient gamma index calculation using fast Euclidean distance transform. , 2009, Physics in medicine and biology.

[68]  Enrique Coiras,et al.  Hexadecagonal region growing , 1998, Pattern Recognit. Lett..

[69]  Ingemar Ragnemalm,et al.  The Euclidean distance transform in arbitrary dimensions , 1992, Pattern Recognit. Lett..

[70]  András Hajdu,et al.  Approximating non-metrical Minkowski distances in 2D , 2008, Pattern Recognit. Lett..

[71]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[72]  Yi-Ta Wu,et al.  Three-dimensional Euclidean distance transformation and its application to shortest path planning , 2004, Pattern Recognit..

[73]  Egon L. van den Broek,et al.  Fast multi-class distance transforms for video surveillance , 2008, Electronic Imaging.