The simulation approach to bacterial outer membrane proteins (Review)

The outer membrane of Gram-negative bacteria serves as a protective barrier against the external environment but is rendered selectively permeable to nutrients and waste by proteins called porins. Other outer membrane proteins (OMPs) provide the membrane with a variety of other functions including active transport, catalysis, pathogenesis and signal transduction. A relatively small number of crystal or NMR structures of these proteins are known, and it is therefore essential that the maximum possible information be extracted. In this respect, computational techniques enable extrapolation from time- and space-averaged static structures to dynamic, physiological events. Electrostatics approaches have been used to investigate the structures of porins. The stochastic simulation of ion trajectories through these channels has been possible with Brownian dynamics, which treats the membrane and solvent approximately, enabling the prediction of conduction properties. Molecular dynamics has also been applied, enabling fully atomistic descriptions of ‘virtual outer membranes’. This has provided atomic resolution descriptions of solute permeation through porins. It has also yielded insights into the dynamics of gating in active transporters and ion channels, as well as providing clues to catalytic mechanisms in outer membrane enzymes. Additionally, simulations are beginning to reveal the common features of interactions between membrane proteins and lipids, with biological implications for OMP folding, stability and mechanism. Future prospects include the simulation of longer, larger and more complex outer membrane systems, with more accurate descriptions of inter-atomic forces.

[1]  T P Straatsma,et al.  Molecular structure of the outer bacterial membrane of Pseudomonas aeruginosa via classical simulation. , 2002, Biopolymers.

[2]  A. Karshikoff,et al.  Electrostatic properties of two porin channels from Escherichia coli. , 1994, Journal of molecular biology.

[3]  L. Tamm,et al.  Biophysical approaches to membrane protein structure determination. , 2001, Current opinion in structural biology.

[4]  Ichiro Yamato,et al.  Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation. , 2003, Biophysical chemistry.

[5]  K. Diederichs,et al.  A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. , 2000, Structure.

[6]  Luc Moulinier,et al.  Transmembrane Signaling across the Ligand-Gated FhuA Receptor Crystal Structures of Free and Ferrichrome-Bound States Reveal Allosteric Changes , 1998, Cell.

[7]  M. Achtman,et al.  Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Bushweller,et al.  Structure, dynamics and function of the outer membrane protein A (OmpA) and influenza hemagglutinin fusion domain in detergent micelles by solution NMR , 2003, FEBS letters.

[9]  M. Karplus,et al.  Computer simulations of the OmpF porin from the outer membrane of Escherichia coli. , 1997, Biophysical journal.

[10]  J. Lakey,et al.  Voltage gating is a fundamental feature of porin and toxin β‐barrel membrane channels , 1998, FEBS letters.

[11]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[12]  Carmen Domene,et al.  Membrane protein simulations: ion channels and bacterial outer membrane proteins. , 2003, Advances in protein chemistry.

[13]  M S Sansom,et al.  Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. , 1998, Biochemistry.

[14]  O. Tapia,et al.  L3 loop-mediated mechanisms of pore closing in porin: a molecular dynamics perturbation approach. , 1995, Protein engineering.

[15]  L. Tamm,et al.  Refolded Outer Membrane Protein A of Escherichia coliForms Ion Channels with Two Conductance States in Planar Lipid Bilayers* , 2000, The Journal of Biological Chemistry.

[16]  P Gros,et al.  Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site , 2001, The EMBO journal.

[17]  Benoît Roux,et al.  Biological membranes : a molecular perspective from computation and experiment , 1996 .

[18]  Graham R. Smith,et al.  Setting up and optimization of membrane protein simulations , 2002, European Biophysics Journal.

[19]  William C. Wimley,et al.  The versatile β-barrel membrane protein , 2003 .

[20]  Julia M. Goodfellow,et al.  Molecular dynamics study , 1997 .

[21]  G. Schulz β-Barrel membrane proteins , 2000 .

[22]  A. Gooley,et al.  Proteomic analysis of the Escherichia coli outer membrane. , 2000, European journal of biochemistry.

[23]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[24]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[25]  Shin-Ho Chung,et al.  Ion channels: recent progress and prospects , 2002, European Biophysics Journal.

[26]  B. Wallace,et al.  HOLE: a program for the analysis of the pore dimensions of ion channel structural models. , 1996, Journal of molecular graphics.

[27]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[28]  Douglas J. Tobias,et al.  Atomic-scale molecular dynamics simulations of lipid membranes , 1997 .

[29]  J. Killian,et al.  How proteins adapt to a membrane-water interface. , 2000, Trends in biochemical sciences.

[30]  J. Faraldo-Gómez,et al.  Acquisition of siderophores in Gram-negative bacteria , 2003, Nature Reviews Molecular Cell Biology.

[31]  R. Dutzler,et al.  Crystal structure and functional characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. , 1999, Structure.

[32]  Tilman Schirmer General and specific porins from bacterial outer membranes. , 1998, Journal of structural biology.

[33]  H. Nikaido Molecular Basis of Bacterial Outer Membrane Permeability Revisited , 2003, Microbiology and Molecular Biology Reviews.

[34]  G. Schulz,et al.  Structure of the outer membrane protein A transmembrane domain , 1998, Nature Structural Biology.

[35]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[36]  M. Mehedintu Biological membranes. A molecular perspective from computation and experiment , 1997 .

[37]  J. Deisenhofer,et al.  Structural basis of gating by the outer membrane transporter FecA. , 2002, Science.

[38]  G. Schulz,et al.  High-resolution structure of the OmpA membrane domain. , 2000, Journal of molecular biology.

[39]  Y. Komeiji,et al.  Computational Observation of an Ion Permeation Through a Channel Protein , 1998, Bioscience reports.

[40]  K. H. Kalk,et al.  Structural evidence for dimerization-regulated activation of an integral membrane phospholipase , 1999, Nature.

[41]  T. Straatsma,et al.  Computer simulation of the rough lipopolysaccharide membrane of Pseudomonas aeruginosa. , 2001, Biophysical journal.

[42]  Lukas K. Tamm,et al.  Structure of outer membrane protein A transmembrane domain by NMR spectroscopy , 2001, Nature Structural Biology.

[43]  Marc Baaden,et al.  A molecular dynamics investigation of mono and dimeric states of the outer membrane enzyme OMPLA. , 2003, Journal of molecular biology.

[44]  Kurt Wüthrich,et al.  NMR solution structure determination of membrane proteins reconstituted in detergent micelles , 2003, FEBS letters.

[45]  P. Phale,et al.  Brownian dynamics simulation of ion flow through porin channels. , 1999, Journal of molecular biology.

[46]  S. White,et al.  The preference of tryptophan for membrane interfaces. , 1998, Biochemistry.

[47]  P. Klebba,et al.  Surface Loop Motion in FepA , 2002, Journal of bacteriology.

[48]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[49]  W. Im,et al.  Ion channels, permeation, and electrostatics: insight into the function of KcsA. , 2000, Biochemistry.

[50]  J. Deisenhofer,et al.  Crystal structure of the outer membrane active transporter FepA from Escherichia coli , 1999, Nature Structural Biology.

[51]  W. Im,et al.  Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry , 2001 .

[52]  A. Roitberg,et al.  All-atom structure prediction and folding simulations of a stable protein. , 2002, Journal of the American Chemical Society.

[53]  On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. , 1994, Protein engineering.

[54]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[55]  M. Sansom,et al.  Lipid/protein interactions and the membrane/water interfacial region. , 2003, Journal of the American Chemical Society.

[56]  D Peter Tieleman,et al.  Orientation and interactions of dipolar molecules during transport through OmpF porin , 2002, FEBS letters.

[57]  Oliver Beckstein,et al.  LARGE SCALE BIOMOLECULAR SIMULATIONS : CURRENT STATUS AND FUTURE PROSPECTS , 2003 .

[58]  G. Schulz,et al.  Molecular architecture and electrostatic properties of a bacterial porin. , 1991, Science.

[59]  K. Diederichs,et al.  Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. , 1998, Science.

[60]  W. Im,et al.  Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. , 2002, Journal of molecular biology.

[61]  Roderick MacKinnon,et al.  Gating the Selectivity Filter in ClC Chloride Channels , 2003, Science.

[62]  J. Mindell,et al.  ClC chloride channels , 2001, Genome Biology.

[63]  K. H. Kalk,et al.  Structural investigations of calcium binding and its role in activity and activation of outer membrane phospholipase A from Escherichia coli. , 2001, Journal of molecular biology.

[64]  N. Isaacs,et al.  Probing the interface between membrane proteins and membrane lipids by X-ray crystallography. , 2001, Trends in biochemical sciences.

[65]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[66]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[67]  Stefan Fischer,et al.  Translocation mechanism of long sugar chains across the maltoporin membrane channel. , 2002, Structure.

[68]  J. Rosenbusch,et al.  Role of charged residues at the OmpF porin channel constriction probed by mutagenesis and simulation. , 2001, Biochemistry.

[69]  Shibasish Chowdhury,et al.  Ab initio folding simulation of the Trp-cage mini-protein approaches NMR resolution. , 2003, Journal of molecular biology.

[70]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[71]  K. Itagaki,et al.  Identification of 1,4‐dihydropyridine binding domains within the primary structure of the α1 subunit of the skeletal muscle L‐type calcium channel , 1993, FEBS letters.

[72]  B. Dijkstra,et al.  Bacterial phospholipase A: structure and function of an integral membrane phospholipase. , 2000, Biochimica et biophysica acta.

[73]  A. Lee,et al.  Lipid-protein interactions in biological membranes: a structural perspective. , 2003, Biochimica et biophysica acta.

[74]  José D Faraldo-Gómez,et al.  Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states. , 2003, Biophysical journal.

[75]  J. Benz,et al.  Annexins: from structure to function. , 1997, Biological chemistry.

[76]  H. Berendsen,et al.  A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. , 1998, Biophysical journal.

[77]  José D Faraldo-Gómez,et al.  OmpA: a pore or not a pore? Simulation and modeling studies. , 2002, Biophysical journal.

[78]  David P. Chimento,et al.  Substrate-induced transmembrane signaling in the cobalamin transporter BtuB , 2003, Nature Structural Biology.

[79]  P. Phale,et al.  Voltage gating of Escherichia coli porin channels: role of the constriction loop. , 1997, Proceedings of the National Academy of Sciences of the United States of America.