On linear stability of predictor–corrector algorithms for fractional differential equations

This paper deals with the numerical approximation of differential equations of fractional order by means of predictor–corrector algorithms. A linear stability analysis is performed and the stability regions of different methods are compared. Furthermore the effects on stability of multiple corrector iterations are verified.

[1]  A. Young,et al.  The application of approximate product-integration to the numerical solution of integral equations , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  J. N. Lyness,et al.  Numerical quadrature and asymptotic expansions , 1967 .

[3]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[4]  Richard Weiss,et al.  Asymptotic Expansions for Product Integration , 1973 .

[5]  Ernst Hairer,et al.  Fast numerical solution of weakly singular Volterra integral equations , 1988 .

[6]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[7]  R. F. Cameron,et al.  Product integration methods for second-kind Abel integral equations , 1984 .

[8]  C. Lubich,et al.  Runge-Kutta theory for Volterra and Abel integral equations of the second kind , 1983 .

[9]  K. Diethelm,et al.  The Fracpece Subroutine for the Numerical Solution of Differential Equations of Fractional Order , 2002 .

[10]  C. Lubich Discretized fractional calculus , 1986 .

[11]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[12]  Kai Diethelm,et al.  Efficient Solution of Multi-Term Fractional Differential Equations Using P(EC)mE Methods , 2003, Computing.

[13]  Roberto Garrappa,et al.  Fractional Adams-Moulton methods , 2008, Math. Comput. Simul..

[14]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[15]  S. Elaydi An introduction to difference equations , 1995 .

[16]  Roberto Garrappa,et al.  On some explicit Adams multistep methods for fractional differential equations , 2009 .

[17]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[18]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[19]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .