An assessment of coupling algorithms for nuclear reactor core physics simulations

This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss-Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton-Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.

[1]  Bobby Philip,et al.  A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins , 2014, J. Comput. Phys..

[2]  Steven Paul Hamilton,et al.  Numerical Solution of the k-Eigenvalue Problem , 2011 .

[3]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[4]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[5]  Homer F. Walker,et al.  Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations , 2006, SIAM Rev..

[6]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[7]  Javier Ortensi,et al.  Physics-based multiscale coupling for full core nuclear reactor simulation , 2014 .

[8]  Carol S. Woodward,et al.  Preconditioning Strategies for Fully Implicit Radiation Diffusion with Material-Energy Transfer , 2001, SIAM J. Sci. Comput..

[9]  Michele Benzi,et al.  A davidson method for the k-eigenvalue problem , 2011 .

[10]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[11]  Vijay S. Mahadevan High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis , 2011 .

[12]  Emilio Baglietto,et al.  Coupled Computational Fluid Dynamics and MOC Neutronic Simulations of Westinghouse PWR Fuel Assemblies with Grid Spacers , 2011 .

[13]  Kevin T. Clarno,et al.  Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE , 2010 .

[14]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[15]  D. Bestion,et al.  NURESIM – A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis , 2011 .

[16]  Yousef Saad,et al.  Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..

[17]  Homer F. Walker,et al.  On Using Approximate Finite Differences in Matrix-Free Newton-Krylov Methods , 2008, SIAM J. Numer. Anal..

[18]  Homer F. Walker,et al.  An accelerated Picard method for nonlinear systems related to variably saturated flow , 2012 .

[19]  Jung Ho Lee,et al.  The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code , 2012 .

[20]  Thomas M. Evans,et al.  Efficient solution of the simplified PN equations , 2015, J. Comput. Phys..

[21]  Michael R. Tonks,et al.  A coupling methodology for mesoscale-informed nuclear fuel performance codes , 2010 .

[22]  Edward W. Larsen,et al.  The Simplified P3 Approximation , 2000 .

[23]  C. T. Kelley,et al.  Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..

[24]  Roger P. Pawlowski,et al.  Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System , 2015 .

[25]  Bradley T Rearden,et al.  Modernization Enhancements in SCALE 6.2 , 2014 .

[26]  Robert A Lefebvre,et al.  Multiphysics Simulations for LWR Analysis , 2013 .

[27]  Yousry Y. Azmy,et al.  Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory , 2011 .

[28]  Homer F. Walker,et al.  Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..

[29]  Xiaojing Liu,et al.  Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly , 2009 .

[30]  Axel Klar,et al.  Simplified P N approximations to the equations of radiative heat transfer and applications , 2002 .

[31]  D. R. Vondy,et al.  VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II. [LMFBR] , 1975 .

[32]  D. A. Knoll,et al.  Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method , 2011 .

[33]  Paul J. Turinsky,et al.  Development and Implementation of a Newton-BICGSTAB Iterative Solver in the FORMOSA-B BWR Core Simulator Code , 2005 .

[34]  Srikanth Allu,et al.  Analysis of physics-based preconditioning for single-phase subchannel equations , 2013 .

[35]  L. J. Ott,et al.  Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments , 2014 .

[36]  Homer F. Walker,et al.  Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..

[37]  Aldo Dall’Osso A neutron balance approach in critical parameter determination , 2008 .

[38]  Yousef Saad,et al.  Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..

[39]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[40]  D. Knoll,et al.  Tightly Coupled Multiphysics Algorithms for Pebble Bed Reactors , 2010 .

[41]  J. Duderstadt,et al.  Nuclear reactor analysis , 1976 .

[42]  J. Ragusa,et al.  Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis , 2009 .

[43]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[44]  Edward W. Larsen,et al.  Asymptotic Derivation of the Multigroup P1 and Simplified PN Equations with Anisotropic Scattering , 1996 .

[45]  Markus Berndt,et al.  A Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem , 2012 .