An assessment of coupling algorithms for nuclear reactor core physics simulations
暂无分享,去创建一个
Roger P. Pawlowski | C. T. Kelley | Alex Toth | Bobby Philip | Thomas M. Evans | Steven P. Hamilton | Kevin T. Clarno | Mark A. Berrill | C. Kelley | M. Berrill | R. Pawlowski | B. Philip | A. Toth | K. Clarno | S. Hamilton | T. Evans
[1] Bobby Philip,et al. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins , 2014, J. Comput. Phys..
[2] Steven Paul Hamilton,et al. Numerical Solution of the k-Eigenvalue Problem , 2011 .
[3] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[4] Jonathan J. Hu,et al. ML 5.0 Smoothed Aggregation Users's Guide , 2006 .
[5] Homer F. Walker,et al. Globalization Techniques for Newton-Krylov Methods and Applications to the Fully Coupled Solution of the Navier-Stokes Equations , 2006, SIAM Rev..
[6] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[7] Javier Ortensi,et al. Physics-based multiscale coupling for full core nuclear reactor simulation , 2014 .
[8] Carol S. Woodward,et al. Preconditioning Strategies for Fully Implicit Radiation Diffusion with Material-Energy Transfer , 2001, SIAM J. Sci. Comput..
[9] Michele Benzi,et al. A davidson method for the k-eigenvalue problem , 2011 .
[10] R. Dembo,et al. INEXACT NEWTON METHODS , 1982 .
[11] Vijay S. Mahadevan. High Resolution Numerical Methods for Coupled Non-linear Multi-physics Simulations with Applications in Reactor Analysis , 2011 .
[12] Emilio Baglietto,et al. Coupled Computational Fluid Dynamics and MOC Neutronic Simulations of Westinghouse PWR Fuel Assemblies with Grid Spacers , 2011 .
[13] Kevin T. Clarno,et al. Denovo: A New Three-Dimensional Parallel Discrete Ordinates Code in SCALE , 2010 .
[14] Donald G. M. Anderson. Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.
[15] D. Bestion,et al. NURESIM – A European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis , 2011 .
[16] Yousef Saad,et al. Hybrid Krylov Methods for Nonlinear Systems of Equations , 1990, SIAM J. Sci. Comput..
[17] Homer F. Walker,et al. On Using Approximate Finite Differences in Matrix-Free Newton-Krylov Methods , 2008, SIAM J. Numer. Anal..
[18] Homer F. Walker,et al. An accelerated Picard method for nonlinear systems related to variably saturated flow , 2012 .
[19] Jung Ho Lee,et al. The AMP (Advanced MultiPhysics) Nuclear Fuel Performance code , 2012 .
[20] Thomas M. Evans,et al. Efficient solution of the simplified PN equations , 2015, J. Comput. Phys..
[21] Michael R. Tonks,et al. A coupling methodology for mesoscale-informed nuclear fuel performance codes , 2010 .
[22] Edward W. Larsen,et al. The Simplified P3 Approximation , 2000 .
[23] C. T. Kelley,et al. Convergence Analysis for Anderson Acceleration , 2015, SIAM J. Numer. Anal..
[24] Roger P. Pawlowski,et al. Analysis of Anderson Acceleration on a Simplified Neutronics/Thermal Hydraulics System , 2015 .
[25] Bradley T Rearden,et al. Modernization Enhancements in SCALE 6.2 , 2014 .
[26] Robert A Lefebvre,et al. Multiphysics Simulations for LWR Analysis , 2013 .
[27] Yousry Y. Azmy,et al. Newton’s Method for Solving k-Eigenvalue Problems in Neutron Diffusion Theory , 2011 .
[28] Homer F. Walker,et al. Globally Convergent Inexact Newton Methods , 1994, SIAM J. Optim..
[29] Xiaojing Liu,et al. Thermal-hydraulic and neutron-physical characteristics of a new SCWR fuel assembly , 2009 .
[30] Axel Klar,et al. Simplified P N approximations to the equations of radiative heat transfer and applications , 2002 .
[31] D. R. Vondy,et al. VENTURE: a code block for solving multigroup neutronics problems applying the finite-difference diffusion-theory approximation to neutron transport, version II. [LMFBR] , 1975 .
[32] D. A. Knoll,et al. Acceleration of k-Eigenvalue/Criticality Calculations Using the Jacobian-Free Newton-Krylov Method , 2011 .
[33] Paul J. Turinsky,et al. Development and Implementation of a Newton-BICGSTAB Iterative Solver in the FORMOSA-B BWR Core Simulator Code , 2005 .
[34] Srikanth Allu,et al. Analysis of physics-based preconditioning for single-phase subchannel equations , 2013 .
[35] L. J. Ott,et al. Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments , 2014 .
[36] Homer F. Walker,et al. Anderson Acceleration for Fixed-Point Iterations , 2011, SIAM J. Numer. Anal..
[37] Aldo Dall’Osso. A neutron balance approach in critical parameter determination , 2008 .
[38] Yousef Saad,et al. Two classes of multisecant methods for nonlinear acceleration , 2009, Numer. Linear Algebra Appl..
[39] E. Lewis,et al. Computational Methods of Neutron Transport , 1993 .
[40] D. Knoll,et al. Tightly Coupled Multiphysics Algorithms for Pebble Bed Reactors , 2010 .
[41] J. Duderstadt,et al. Nuclear reactor analysis , 1976 .
[42] J. Ragusa,et al. Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis , 2009 .
[43] N. M. Larson,et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .
[44] Edward W. Larsen,et al. Asymptotic Derivation of the Multigroup P1 and Simplified PN Equations with Anisotropic Scattering , 1996 .
[45] Markus Berndt,et al. A Nonlinear Krylov Accelerator for the Boltzmann k-Eigenvalue Problem , 2012 .