What Is the Fractional Laplacian

The fractional Laplacian in R^d has multiple equivalent characterizations. Moreover, in bounded domains, boundary conditions must be incorporated in these characterizations in mathematically distinct ways, and there is currently no consensus in the literature as to which definition of the fractional Laplacian in bounded domains is most appropriate for a given application. The Riesz (or integral) definition, for example, admits a nonlocal boundary condition, where the value of a function u(x) must be prescribed on the entire exterior of the domain in order to compute its fractional Laplacian. In contrast, the spectral definition requires only the standard local boundary condition. These differences, among others, lead us to ask the question: "What is the fractional Laplacian?" We compare several commonly used definitions of the fractional Laplacian (the Riesz, spectral, directional, and horizon-based nonlocal definitions), and we use a quantitative approach to identify their practical differences. In this work, we provide a quantitative assessment of new numerical methods as well as available state-of-the-art methods for discretizing the fractional Laplacian, and we present new results on the differences in features, regularity, and boundary behaviors of solutions to equations posed with these different definitions. We present stochastic interpretations and demonstrate the equivalence between some recent formulations. Through our efforts, we aim to further engage the research community in open problems and assist practitioners in identifying the most appropriate definition and computational approach to use for their mathematical models in addressing anomalous transport in diverse applications.

[1]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[2]  Zhiping Mao,et al.  A Spectral Method (of Exponential Convergence) for Singular Solutions of the Diffusion Equation with General Two-Sided Fractional Derivative , 2018, SIAM J. Numer. Anal..

[3]  Renming Song,et al.  Potential theory of subordinate killed Brownian motion in a domain , 2003 .

[4]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[5]  H. Kober ON FRACTIONAL INTEGRALS AND DERIVATIVES , 1940 .

[6]  Pablo Raúl Stinga,et al.  Fractional powers of second order partial differential operators: extension problem and regularity theory , 2010 .

[7]  Mark M. Meerschaert,et al.  Space-time fractional diffusion on bounded domains , 2012 .

[8]  Guofei Pang,et al.  Gauss-Jacobi-type quadrature rules for fractional directional integrals , 2013, Comput. Math. Appl..

[9]  M. Kac On distributions of certain Wiener functionals , 1949 .

[10]  Mark Ainsworth,et al.  Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains , 2018 .

[11]  J. V'azquez Recent progress in the theory of Nonlinear Diffusion with Fractional Laplacian Operators , 2014, 1401.3640.

[12]  L. Roncal,et al.  Fractional Laplacian on the torus , 2012, 1209.6104.

[13]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[14]  G. A. Brosamler,et al.  A probalistic solution of the Neumann problem. , 1976 .

[15]  Renming Song,et al.  Potential Analysis of Stable Processes and its Extensions , 2009 .

[16]  Weihua Deng,et al.  A Riesz Basis Galerkin Method for the Tempered Fractional Laplacian , 2018, SIAM J. Numer. Anal..

[17]  Giulio Schimperna,et al.  Fractional Cahn-Hilliard, Allen-Cahn and porous medium equations , 2015, 1502.06383.

[18]  L. Roncal,et al.  Transference of Fractional Laplacian Regularity , 2014 .

[19]  M. Meerschaert,et al.  VECTOR GRÜNWALD FORMULA FOR FRACTIONAL DERIVATIVES , 2004 .

[20]  Mihály Kovács,et al.  Boundary conditions for fractional diffusion , 2017, J. Comput. Appl. Math..

[21]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[22]  R. M. Blumenthal,et al.  On the distribution of first hits for the symmetric stable processes. , 1961 .

[23]  Harbir Antil,et al.  External optimal control of fractional parabolic PDEs , 2019 .

[24]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[25]  Changpin Li,et al.  Numerical methods for fractional partial differential equations , 2018, Int. J. Comput. Math..

[26]  Gabriel Acosta,et al.  A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations , 2015, SIAM J. Numer. Anal..

[27]  R. Dante DeBlassie,et al.  The First Exit Time of a Two-Dimensional Symmetric Stable Process from a Wedge , 1990 .

[28]  Jie Shen,et al.  Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations , 2016 .

[29]  Tony Shardlow,et al.  Unbiased `walk-on-spheres' Monte Carlo methods for the fractional Laplacian , 2016, 1609.03127.

[30]  Mark M. Meerschaert,et al.  Boundary conditions for two-sided fractional diffusion , 2019, J. Comput. Phys..

[31]  R. Herrmann Fractional Calculus: An Introduction for Physicists , 2011 .

[32]  Norbert Heuer,et al.  Finite element approximations of the nonhomogeneous fractional Dirichlet problem , 2017, 1709.06592.

[33]  Pedro J. Miana,et al.  Extension problem and fractional operators: semigroups and wave equations , 2012, 1207.7203.

[34]  Guy Barles,et al.  On Neumann Type Problems for nonlocal Equations set in a half Space , 2011, 1112.0476.

[35]  C. Pozrikidis The Fractional Laplacian , 2016 .

[36]  Luca Gerardo-Giorda,et al.  Discretisations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions , 2017 .

[37]  Wei Cai,et al.  Computation of Local Time of Reflecting Brownian Motion and Probabilistic Representation of the Neumann Problem , 2015, 1502.01319.

[38]  Joseph E. Pasciak,et al.  Numerical approximation of fractional powers of elliptic operators , 2013, Math. Comput..

[39]  Guofei Pang,et al.  Stochastic Solution of Elliptic and Parabolic Boundary Value Problems for the Spectral Fractional Laplacian , 2018, 1812.01206.

[40]  Roberta Musina,et al.  On fractional Laplacians -- 2 , 2014, 1408.3568.

[41]  F. G. Friedlander Introduction to the theory of distributions , 1982 .

[42]  Erratum: Asymptotic Expansion of Solutions to the Dissipative Equation with Fractional Laplacian , 2016, SIAM J. Math. Anal..

[43]  Joseph E. Pasciak,et al.  On sinc quadrature approximations of fractional powers of regularly accretive operators , 2017, J. Num. Math..

[44]  E. Valdinoci,et al.  Nonlocal Diffusion and Applications , 2015, 1504.08292.

[45]  Juan Luis V'azquez,et al.  The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion , 2017, 1706.08241.

[46]  Mark Ainsworth,et al.  Hybrid Finite Element-Spectral Method for the Fractional Laplacian: Approximation Theory and Efficient Solver , 2018, SIAM J. Sci. Comput..

[47]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[48]  Luca Gerardo-Giorda,et al.  Discretizations of the Spectral Fractional Laplacian on General Domains with Dirichlet, Neumann, and Robin Boundary Conditions , 2017, SIAM J. Numer. Anal..

[49]  Xavier Ros-Oton,et al.  Nonlocal problems with Neumann boundary conditions , 2014, 1407.3313.

[50]  R. Getoor,et al.  First passage times for symmetric stable processes in space , 1961 .

[51]  Zhiping Mao,et al.  Analysis and Approximation of a Fractional Cahn-Hilliard Equation , 2017, SIAM J. Numer. Anal..

[52]  Andrei N. Borodin,et al.  Reflecting Brownian Motion , 1996 .

[53]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[54]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[55]  P. Lions,et al.  Stochastic differential equations with reflecting boundary conditions , 1984 .

[56]  Nicolas Privault,et al.  Potential Theory in Classical Probability , 2008 .

[57]  N. Laskin Fractional quantum mechanics and Lévy path integrals , 1999, hep-ph/9910419.

[58]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[59]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[60]  George E. Karniadakis,et al.  Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations , 2017, SIAM J. Sci. Comput..

[61]  Mark M. Meerschaert,et al.  Anomalous diffusion with ballistic scaling: A new fractional derivative , 2018, J. Comput. Appl. Math..

[62]  Max Gunzburger,et al.  Regularity and approximation analyses of nonlocal variational equality and inequality problems , 2018, 1804.10282.

[63]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[64]  Wei Cai,et al.  Numerical Solution of the Robin Problem of Laplace Equations with a Feynman–Kac Formula and Reflecting Brownian Motions , 2016, J. Sci. Comput..

[65]  Mark Ainsworth,et al.  Well-posedness of the Cahn–Hilliard equation with fractional free energy and its Fourier Galerkin approximation , 2017 .

[66]  Svetozar Margenov,et al.  A Comparison of Accuracy and Efficiency of Parallel Solvers for Fractional Power Diffusion Problems , 2017, PPAM.

[67]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[68]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[69]  D. Benson,et al.  Multidimensional advection and fractional dispersion. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[70]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[71]  P. R. Stinga,et al.  Fractional semilinear Neumann problems arising from a fractional Keller–Segel model , 2014, 1406.7406.

[72]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.

[73]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[74]  Zhi-Ming Ma,et al.  Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .

[75]  Wen Chen,et al.  Recent Advances in Radial Basis Function Collocation Methods , 2013 .

[76]  Guofei Pang,et al.  A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction , 2016, J. Comput. Phys..

[77]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[78]  Claudia Bucur,et al.  Some observations on the Green function for the ball in the fractional Laplace framework , 2015, 1502.06468.

[79]  Mahamadi Warma,et al.  The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets , 2015 .

[80]  Wei Cai,et al.  A Parallel Method for Solving Laplace Equations with Dirichlet Data Using Local Boundary Integral Equations and Random Walks , 2012, SIAM J. Sci. Comput..

[81]  P. R. Stinga,et al.  Extension Problem and Harnack's Inequality for Some Fractional Operators , 2009, 0910.2569.

[82]  M. Meerschaert,et al.  Fractional vector calculus for fractional advection–dispersion , 2006 .

[83]  Mark Ainsworth,et al.  Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver☆☆☆ , 2017, 1708.03912.

[84]  Yanzhi Zhang,et al.  A comparative study on nonlocal diffusion operators related to the fractional Laplacian , 2017, Discrete & Continuous Dynamical Systems - B.

[85]  Petr N. Vabishchevich Numerically solving an equation for fractional powers of elliptic operators , 2015, J. Comput. Phys..

[86]  A. V. Balakrishnan,et al.  Fractional powers of closed operators and the semigroups generated by them. , 1960 .

[87]  Tommaso Boggio,et al.  Sulle funzioni di green d’ordinem , 1905 .

[88]  É. Pardoux,et al.  A Probabilistic Formula for a Poisson Equation with Neumann Boundary Condition , 2009 .

[89]  F. Quirós,et al.  A P ] 1 4 Ja n 20 10 A fractional porous medium equation by , 2010 .

[90]  Guofei Pang,et al.  Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..

[91]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[92]  Adam M. Oberman,et al.  Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach , 2013, SIAM J. Numer. Anal..

[93]  S. Molchanov,et al.  Symmetric Stable Processes as Traces of Degenerate Diffusion Processes , 1969 .

[94]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[95]  Harbir Antil,et al.  Fractional Operators with Inhomogeneous Boundary Conditions: Analysis, Control, and Discretization , 2017, 1703.05256.

[96]  Masakazu Yamamoto Asymptotic Expansion of Solutions to the Dissipative Equation with Fractional Laplacian , 2012, SIAM J. Math. Anal..

[97]  Gerd Grubb,et al.  Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators , 2013, 1310.0951.

[98]  Roberta Musina,et al.  On Fractional Laplacians , 2013, 1308.3606.

[99]  Gabriel Acosta,et al.  A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian , 2016, Comput. Math. Appl..

[100]  Ricardo H. Nochetto,et al.  Numerical methods for fractional diffusion , 2017, Comput. Vis. Sci..

[101]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[102]  Renming Song,et al.  Two-sided eigenvalue estimates for subordinate processes in domains , 2005 .

[103]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[104]  Bartłlomiej Dyda,et al.  Fractional calculus for power functions and eigenvalues of the fractional Laplacian , 2012 .

[105]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[106]  Koponen,et al.  Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  R. Schilling Financial Modelling with Jump Processes , 2005 .

[108]  V. Kolokoltsov Markov Processes, Semigroups and Generators , 2011 .

[109]  Gerd Grubb,et al.  Regularity of spectral fractional Dirichlet and Neumann problems , 2014, 1412.3744.

[110]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..