High-Threshold Code for Modular Hardware With Asymmetric Noise

We consider an approach to fault tolerant quantum computing based on a simple error detecting code operating as the substrate for a conventional surface code. We develop a customised decoder to process the information about the likely location of errors, obtained from the error detect stage, with an advanced variant of the minimum weight perfect matching algorithm. A threshold gate-level error rate of 1.42% is found for the concatenated code given highly asymmetric noise. This is superior to the standard surface code and remains so as we introduce a significant component of depolarising noise; specifically, until the latter is 70% the strength of the former. Moreover, given the asymmetric noise case, the threshold rises to 6.24% if we additionally assume that local operations have 20 times higher fidelity than long range gates. Thus for systems that are both modular and prone to asymmetric noise our code structure can be very advantageous.

[1]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[2]  Immanuel Bloch,et al.  Microscopic Characterization of Scalable Coherent Rydberg Superatoms , 2015 .

[3]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[4]  Austin G. Fowler,et al.  Topological code Autotune , 2012, 1202.6111.

[5]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[6]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[7]  Martin Suchara,et al.  Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.

[8]  S. Bravyi,et al.  Quantum self-correction in the 3D cubic code model. , 2013, Physical review letters.

[9]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[10]  Jesper Lykke Jacobsen,et al.  High-precision percolation thresholds and Potts-model critical manifolds from graph polynomials , 2014, 1401.7847.

[11]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[12]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[13]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[14]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[15]  Austin G. Fowler,et al.  Quantum computing with nearest neighbor interactions and error rates over 1 , 2010, 1009.3686.

[16]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[17]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[18]  Barbara M. Terhal,et al.  Noise thresholds for the [4, 2, 2]-concatenated toric code , 2016, Quantum Inf. Comput..

[19]  M.,et al.  Journal of Research of the National Bureau of Standards , 1947, Nature.

[20]  Simon C. Benjamin,et al.  Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links , 2014, 1406.0880.

[21]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[22]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[23]  M. Newman,et al.  Efficient Monte Carlo algorithm and high-precision results for percolation. , 2000, Physical review letters.

[24]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[25]  David Poulin,et al.  Tensor-Network Simulations of the Surface Code under Realistic Noise. , 2016, Physical review letters.

[26]  Stephen D Bartlett,et al.  Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.

[27]  S. Ávila,et al.  Diagnóstico y evaluación de la severidad y de la cobertura hospitalaria en la siniestralidad vial en Bogotá , 2020 .

[28]  Kenneth R. Brown,et al.  2D Compass Codes , 2018, Physical Review X.

[29]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[30]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[31]  Kae Nemoto,et al.  High-threshold topological quantum error correction against biased noise , 2013, 1308.4776.

[32]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[33]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[34]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[35]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[36]  K. Saeedi,et al.  Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28 , 2013, Science.

[37]  Hussain Anwar,et al.  Fast fault-tolerant decoder for qubit and qudit surface codes , 2014, 1411.3028.

[38]  Ying Li,et al.  Hierarchical surface code for network quantum computing with modules of arbitrary size , 2015, 1509.07796.